〈〈长方形面积的计算〉〉是新教材三年级下册内容,本节课是在学生初步认识长方形的特征以及初步掌握周长计算方法的基础上进行教学的,本节课主要是图形面积开始,也是以后学习平行四边形、三角形等面积计算打基础。为大家精心整理了长方形的面积小学数学教案【优秀7篇】,如果对您有一些参考与帮助,请分享给最好的朋友。
一、教学内容
《长方形面积的计算》是新教材三年级下册内容,本节课是在学生初步认识长方形的特征以及初步掌握周长计算方法的基础上进行教学的,本节课主要是图形面积开始,也是以后学习平行四边形、三角形等面积计算打基础。
二、教学目标
1、 能探索总结出长方形面积计算的计算公式
2、 会运用公式正确计算出长方形的面积。
3、 做到认真操作、积极思考、主动探索。
三、教学重点:
能探索总结出长方形面积的计算公式。
四、教学难点:
探索出长方形面积的计算公式。
五、教法:
依据尝试教学理论和新课标的改革,本节课采用尝试教法,同时利用多媒体演示教学方法。如:让学生在小组里用学具任意摆出三个不同的。长方形,并把数据填入表里,再量出给出的长方形的长、宽,量出它们的面积。通过这两次活动,使学生出步体会长方形面积与长和宽的关系。
六、学法:
1、 小组合作学习的方法。
2、 动手操作学习的方法。
七、教学程序:
1、 首先出示媒体长方形,并用1平方厘米的小正方形出它们的面积,让学生观察并说出这个长方形的面积是多少平方厘米?长、宽个是几厘米?这样为学生下步的动手操作创设情景,做好充分的教学准备。
2、导入新课
(1) 面积小的长方形可以用小正方形摆出它的面积,让学生想一想,如果想知道大的长方形的面积用这种方法行吗?揭示课题并板书
3、学习新课:
(2) 手操作、初步感知
学生要获得知识,形成技能、领悟数学思想的方法,操作是不可少的。学生在操作中手、脑并用,充分感知形成表象。
(3) 直观演示,明确道理
充分发挥媒体教学功能,作到直观、形象,动态地展示知识的形成过程。为形象思维提供了依据。较好地突破重点、难点。演示为:
A、出示长方形面积24平方厘米(长6厘米、宽4厘米)。
B、出示一个1平方厘米的小正方形放在左边角注明边长为1厘米。
C、横着再放5个。
D、左起按顺序纵着放其余的。
F、实践操作。如:让学生说出长摆几个小正方形是几厘米,宽摆几个是几厘米,一共有多少个小正方形,它的面积是多少平方厘米?让学生真正理解三者之间的关系。
(4) 引导质疑,实际测量
提出问题比解决问题还要重要,鼓励引导学生针对结论质疑。重点理解为什么用长乘宽就可以求出长方形的面积呢?让学生带着疑问进入看书自学的探索中,进而弄清为什么用长乘以宽就能求出长方形的面积。充分利用媒体演示,使学生明白长方形所含的平方厘米数等于长和宽所含厘米数的面积。为了使学生真正达到会运用的目的。我们让学生去测量,计算身边的长方形物体的面积的大小,通过动手学生就已经把所学知识在头脑中形成了。
教学目标
1、初步理解长方形面积计算公式的推导过程,能正确地计算长方形的面积、
2、在长方形面积计算公式的推导过程中,培养学生抽象概括能力及动手操作和解决实际问题的能力、
教学重点
理解并掌握长方形面积的计算公式,能正确地计算长方形的面积、
教学难点
引导学生通过亲身实践推导长方形面积的计算公式、
教学过程
一、复习准备
上节课我们学习了面积和面积单位,老师给同学们留了一道思考题、如果我们要测量学校的操场面积,用一平方米的面积单位,一个一个地拼摆,可行吗?(不可行)
那有没有什么可行的方法呢?今天我们就来研究科学的计算方法、(板书课题:长方形面积的计算)
二、学习新课
1、动手操作,弄清基本关系:
每排个数、排数与总个数的关系、
请同学拿出1平方厘米的小正方形,摆出上面的长方形想:一排摆了多少个小正方形?一共摆了几排?(学生操作时,老师把表格画在黑板上)
(一排摆几个小正方形、摆了几排、一共摆了多少个小正方形,它的面积是多少,老师依次在表格中板书出来)
请同学用1平方厘米的'小正方形摆出上面这个长方形、
每排摆了几个?摆了几排?一共有多少个?你是怎样算出来的?
(每排个数×排数=总个数)
前面讲过有多少个面积单位,面积就是多少、所以可以用“面积”代替“总个数”,在表格图“总个数”下面写上“面积”(平方厘米)、
下面就用简便方法计算长方形面积、
2、想象操作,弄清过渡关系:
长与每排个数、宽与排数的关系、
投影出示:C
思考:这个长方形长4厘米,沿着长边,一排可以摆几个1平方厘米的正方形?
不用动手摆,脑子里想一想、如果长方形长5厘米、10厘米……一排可以摆几个呢?
那么,你发现了什么?(两个同学互相说一说)
生:长几厘米,每排就摆几个、
师:那么就是说,长可以代替“每排个数”、老师在表格中“每排个数”下面写出“长”(厘米)、
再看,长方形的宽是3厘米,沿着宽可以摆这样的几排呢?同学们不用动手摆,怎么知道可以摆3排呢?能不能说出宽与排数的关系?
生:宽是几厘米,就可以摆成这样的几排、
师:那么,也就是说用“宽”可以代替“排数”、(老师在表格中的“排数”下面写上“宽”(厘米)、
请同学们很快求出这个长方形的面积是多少?说说你是怎样算出来的、
3、理解长方形的面积与长、宽的关系、
投影出示:D
师:请同学们讨论一下,这个长方形的面积是多少?你是怎样求出来的?长方形的面积与它的长和宽有什么关系?
学生讨论后,老师引导学生对照表格,请仔细观察,再回忆一下,刚才的图A、图B、图C、图D、你发现了什么?
老师进一步引导学生,计算长方形面积的方法(最简单的)谁能概括出来?
学生总结归纳出:
长方形面积=长×宽(老师板书)
回顾一下,对照表格进行验证、
出示例题:一个长5厘米,宽3厘米的长方形纸板,它的面积是多少?
师:用我们刚才学到的知识,请同学们自己解这道题、做完后,互相交换检查一下、
订正时,老师板书:
5×3=15(平方厘米)
答:它的面积是15平方厘米、
引导学生看书,质疑、
三、巩固反馈
1、填表、(学生口答)
2、选择正确答案、
(1)一个长方形长6厘米,宽3厘米,面积是()、
A、18厘米B、18平方厘米
(2)一个长方形的长是8分米,宽是4分米,周长是()
A、24分米B、32平方分米
3、一个长方形花坛的面积是48平方米、问:它的长和宽分别可以是多少米?
四、小结
这节课我们学习了什么?(长方形面积的计算、)要想求长方形的面积,必须知道什么条件?(长和宽)怎样计算长方形的面积?(长×宽=面积)计算长方形面积应该注意什么问题?(长和宽的单位名称要先统一)
五、课后作业
1、一台电视机的外壳,一个面的长是44厘米,宽是34厘米、它的面积是多少平方厘米?
2、量出教室里黑板的长和宽各是多少分米、算出黑板的面积是多少平方分米、
3、选择一块长方形的地,沿着地边量出它的长和宽各是多少米、再算出这块地的面积是多少平方米、
教学目的:
使学生初步理解长方形面积的计算方法,会运用公式正确地计算长方形的面积,培养学生的抽象概括能力。
教具、学具准备:
师准备卷尺,生准备一张长5厘米,宽3厘米的长方形,20个1平方厘米的正方形。
教学过程:
一、复习。
1、让学生说一说面积的含义,并举例说明。
2、让学生说一说学过的面积单位,并比划一下它们的大小。
二、新课。
1、教学长方形面积的计算。
让生拿出准备好的长5厘米,宽3厘米的长方形,用1平方厘米的正方形测量一下它的面积。生摆完后问:一共摆了多少个1平方厘米的正方形?这个长方形的面积是多少平方厘米?沿长边摆几个正方形?沿短边摆几个正方形?
根据生的`回答,是在黑板上画出图形(画长方形时用1分米表示1厘米):
师问:这个长方形的长是几厘米?沿长边一排摆几个1平方厘米的正方形?是几平方厘米?每排正方形的个数与长方形的长有什么关系?这个长方形的宽是几厘米?沿宽边摆里几个1平方厘米的正方形?排数与长方形的宽有什么关系?一共摆了多少个正方形?你是怎样计算的?
生答,师小结并板书:5times;3=15
长times;宽=面积
2、练习。“做一做”的题目,让生先量出它的长和宽,再计算它的面积。
二、课堂练习。
1、做练习二十八的第1题。
先让学生说一说长方形的长和宽是多少厘米,再计算。
2、做练习二十八的第2题。
生独立完成,集体订正。
3、做练习二十八的第3题。
先让一生与老师共同测量出黑板的长和宽,再让生计算。
三、作业
练习二十八的第4、5题。
教学目标:
经历探索长方形和正方形面积公式的过程,掌握长方形、正方形面积计算的方法,能够解决祥光的实际问题。
以单位面积为参考,估计长方形和正方形的面积,提高估算能力。
在实践操作、讨论交流等活动中,积累活动经验,初步养成独立思考,勇于探索的习惯。
教学重点:
探索长方形面积公式的发现过程。
教学难点:
理解通过计算求解长方形面积的方法。
教学准备:
教案、PPT、若干1平方厘米的小正方形。
教学过程:
创设情境,故事导入
师:同学们,你们听过“龟兔赛跑”的故事吗?有一天,乌龟又遇到了兔子,并向兔子提出挑战,这次进行粉刷墙面的比赛,看谁能赢。
课件出示:兔子粉刷一个长方形的墙面,乌龟粉刷一个正方形的墙面,它们同时开始。
教师引导:怎样才能比较出谁赢了?(要想比较出谁赢了,就要知道它们粉刷墙面的面积到底哪个大些)
揭示课题。在实际生活中,有些物体的面积用单位面积去量既不方便,又不符合实际,这就需要我们找到一种计算面积的方法,今天我们就一起来学习长方形和正方形的面积的计算方法。(板书课题:长方形的面积)
自主探究——长方形面积公式
课件出示教材53页长方形①。提出问题:长方形①的面积是多少?用1平方厘米的正方形摆一摆。
小组合作,在长方形里摆边长是1厘米的正方形。
全班交流分享摆的结果吗?
生1:我正好摆了6个1平方厘米的正方形,所以这个长方形的面积是6平方厘米。
生2:每行摆3个,正好摆了2行,所以这个长方形的面积是3×2=6(平方厘米)。
教师总结:第二名同学的方法不用密铺,只要用面积单位分别摆满长和宽,就能算出摆满长方形所需的面积单位的个数。所以我们也可以用长×宽来计算这个长方形的面积。
5.其他长方形的面积是不是也可以用“长×宽”来计算呢?请同学们以小组为单位进一步验证。
(1)课件出示长方形②和长方形③,要求用1平方厘米的正方形摆一摆,一名同学记录,其他同学摆,边操作边填表。
(2)请同学们仔细观察表格,说一说你有什么发现。
(3)师小结:长方形的面积=长×宽。(板书:长方形的面积=长×宽)
(三)自主探究——正方形面积公式
1.大家看一看最后一个长方形有什么特点。(这样的长方形就是我们以前学过的正方形)
2.引导学生由长方形的面积计算公式类推出正方形的面积=边长×边长。
3.同桌之间互相说一说求长方形、正方形的面积分别需要知道什么。
(四)巩固新知
1.解决课前的龟兔粉刷墙比赛的问题。
2.练习课后第1题和第2题
(五)课堂小结
今天这节课同学们学会了哪些知识?
(1)学会了长方形、正方形的面积计算公式。
(2)学会了面积计算公式的推导过程。
教学反思:
长方形和正方形的面积是北师大版三年级数学下册面积这一单元的教学内容,掌握长方形、正方形的面积公式,能解决一些简单的实际问题。根据新目标的教学理念,在教学中让学生积极主动地探索、解决数学问题,发现数学规律,获得数学经验,我采取了“自主探究式”的教学模式。整节课的教学过程注重了学习方法,探究方法法人获取,让学生主动获取知识,同时也让学生知道这些知识是如何被发现的,结论是如何获得的,让学生能把自己学习到的知识解决生活中的实际问题,进一步激发学生的学习数学的兴趣。
长方形面积的教学不仅要让学生知道计算公式、会用面积公式进行计算,更重要的是要引导学生经历探索研究长方形与正方形面积公式的过程,通过实践操作、讨论、交流等活动,自己探索发现长方形面积的计算方法,并能感悟到“长×宽”的算理,促进学生对数学的理解。本节课中引导学生在活动中学,设计了两次不同目的的操作体验,力求通过让学生“做”数学,逐步达成使学生既知道长方形、正方形的面积公式,又要在大脑中建立起为什么长方形、正方形的面积公式是“长×宽”和“边长×边长”的表象,较好地获得对计算方法的理解。
《标准》中“长方形和正方形面积”的具体目标要求为“探索并掌握长方形、正方形的面积公式,能估计给定的长方形、正方形的面积”。因此,本节课在引导学生探索研究长方形、正方形面积的计算方法的同时,注意结合学生熟悉的物体引导学生尝试对长方形、正方形的'面积进行估测,培养学生的空间观念和几何直觉。
在有优点的同时也存在着不足主要体现在以下几个方面:
1、学生在操作过程中有的在长方形的表面摆满1平方厘米的方格;有的是沿着长、宽各摆一行些方法在学生的合作中都有体现,如果能让多一些学生利用投影仪分别演示一遍更有利于学生理解公式的推导过程。
2、在教学时为了避免学生把面积和周长的概念混淆,课上没有强调周长和面积的关系。反而造成了学生的一个误区,学生在探索正方形周长的公式时有的学生就认为求正方形的面积公式=边长×边长与正方形的周长公式=边长×4混淆了,导致部分学生对求正方形面积公式的推导过程还是模棱两可。
总而言之,这节课上学生对概念的掌握还是较清楚,并能够根据长方形面积公式解决一些基本的问题,达到了预想的教学目的。
教学目的:
1.引导学生自己去实验发现长方形面积计算的公式,使学生初步理解长方形面积的计算方法,会运用公式正确地计算长方形的面积。
2.通过教学初步培养学生提出问题、分析问题、解决问题的能力。
3.渗透实验——发现——验证的学习方法教学,发挥学生的主体性,为今后学习其他平面图形面积的计算打基础。
教学重点:
理解掌握长方形面积的计算公式。
教学难点:
引导学生通过实验,探究得出长方形面积的计算公式。
教学结构:
采用“自主探究式”教学模式结构进行教学。
教学过程:
一、创设情境、导入新课
1.师:同学们,上节课我们学习了有关面积的知识(板书:面积),常用的面积单位有哪些呢?
生:常用的面积单位有平方厘米、平方分米、平方米。
2.师:这是一个长方形纸板,要测量它的面积,你认为用哪一个面积单位比较合适?用1平方分米的正方形怎样去测量?
根据学生的回答电脑演示测量过程,完成填空:这个长方形含有()个1平方分米的正方形,它的面积是()平方分米。
3.播放录像,谈话导入。
师:同学们,用面积单位直接去量,可以得到这个长方形的面积.但是,在实际生活中,如果要测量篮球场的面积、高楼墙面的面积、游泳池池面的面积……也用面积单位一个个去量,那可太麻烦了。所以,我们就要寻找一种更好、更简便的方法来计算面积,这节课我们就来学习长方形面积的计算。(完成板书:长方形面积的计算)
[评析:现代小学数学课堂教学必须让数学知识和学生的生活实际贴近再贴近,教者在导入新课时捕捉住生活中的几个场景,通过录像呈现出高楼、篮球场、游泳池的长方形块面,鲜艳生动的画面,具体可感的生活实际场景,引起了学生新知的欲望:是呀,用面积单位直接量长方形的面积,这种办法在实际生活中太麻烦,也是行不通的。怎么办呢?这样就引出了一个数学问题:应该寻找一个简便地计算长方形面积的方法。]
二、提出问题、确定目标
1.师:看了课题,你们想知道哪些知识?
根据学生的回答老师归纳:
(1)计算长方形面积的方法是什么?(板书:方法)
(2)学了长方形面积计算的方法有什么用?(板书:应用)
师:这节课,我们就围绕同学们提出的这两个问题进行学习,希望大家自己动脑,小组合作,共同来解决。
[评析:问题是学习的动力,有了问题学生才有学习的欲望,学习的目标。而教师把提出问题的主动权让给学生,又把寻找答案的主动权还给学生,学生探求奥秘的情感得到充分激发。
三、实践探究、寻找方法
(一)提供材料,启发大胆猜想。
l.出示长2厘米、宽1厘米的长方形。
(1)师:这个长方形长和宽分别是多少呢?
生:这个长方形长是2厘米、宽是1厘米。
师:长2厘米,也就是长所含的厘米数是2,宽1厘米,也就是宽所含的厘米数是1。
(2)把这个长方形的长和宽通过多媒体手段进行图形变化,得到四个大小不同的长方形。
(3)师:如果把一个长方形的长和宽不断地变化,可以得到多少个大小不同的长方形?
生:无数个。
师连问:通过这个长方形的变化,你们觉得长方形的面积可能和什么有关呢?请你猜一猜?
生A:和长有关。
生B:和宽有关。
生C:长方形的面积可能与长和宽有关。
[评析:教师通过提供一组感性学习材料,适当进行启发,使学生的思维有了一定的指向和集中。学生凭着对学习材料的直接反应作出了大胆的设想。避免了学生盲目的猜测,同时又唤起学生主动参与学习,探究知识的欲望。]
(二)分组实验,发现计算方法。
1.师点拔:长方形的面积是不是与长和宽有关呢?我们可以做个小小的实验。(板书:实验)
师:要测量这些长方形的面积,你们需要什么工具呢?
生:我们需要1平方厘米的正方形。每组派代表领取1平方厘米的正方形。
师布置实验要求:测量时,由小组长负责,小组内两个两个分工合作,l号、3号、5号负责测量,2号、4号、6号记录结果。
2.各组测量,记录测量结果。
3.汇报测量结果后,各小组长带领组员认真观察表格,并对思考题展开积极讨论。
思考题。
从上往下:
长所含的厘米数有什么变化?
宽所含的厘米数有什么变化?
长方形面积所含的平方厘米数有什么变化?
从左往右:
长方形面积所含的平方厘米数和长方形的什么有关?
它们是怎样的一种关系?
4.各组汇报讨论结果,出示学生讨论后的发现:长方形面积所含的平方厘米数正好等于长和宽所含厘米数的乘积,齐读。
5.发现计算方法。
师:通过这个实验,你们有没有发现用更简便的方法来计算长方形的面积?
生:只要用长乘以宽,就能得出长方形的面积。
师:这位同学真了不起,通过实验,发现了一个计算长方形面积的方法(板书:发现)。你叫什么名字哪我们就把这个发现命名为×××的发现。
[评析:在这一探究发现的过程中,学生通过自己动手和动脑,获得了认识。并经过启发、讨论和独立思考、学生主动参与、积极探究,获得了长方形面积计算的方法,学生认识水平、实践能力和创新意识从中得到了培养。]
(三)分类验证,确认计算方法。
1.师:这个发现是否准确无误呢?这个方法是否对计算所有的长方形的。面积都适用呢?我们还要对这个发现进行验证。(板书:验证)
2.布置验证要求:出示5个大小不同的长方形,请各级组长任选一个长方形,组内同学一起来验证。
3.学生运用刚才的发现进行验证。
4.交流验证的结果。
师:通过验证你们认为这个计算方法正确吗?
生:我认为这个计算方法完全正确。
师:你为什么这么认为呢?
生:我先用×××发现的计算方法算出这些长方形的面积,再用1平方厘米的正方形直接测量出这些长方形的面积,两种方法的结果是一样的,所以,我们认为这个计算方法是正确的。
师:在各小组的努力下,我们证实了×××的发现是正确的,让我们用响亮的掌声向他表示祝贺!
评析:长方形的面积计算公式是学生通过一次实验而发现的,是不能成为科学发现的结论,还必须通过“验证”这一环节,使学生明白在任何一种发现活动中,新的认识、新的结论不能盲目、划率地断言,必须要有充分的科学依据。教者设计达一教学环节,既渗透了科学探究的一般方法、更重要的是培养学生一丝不苟、实事求是的严谨科学态度。
四、整理归纳、提示学习方法
1.师:学到这儿,同学们知道计算长方形面积的方法了吗?
生:知道,长方形的面积等于长乘以宽。
2.师:刚才,我们是怎样找到这个计算方法的?
生:我们先做了一个小实验,得到了一个发现,然后大家一起验证,证明这个发现是正确的,找到了长方形面积的计算方法。
师:同学们说的真好,实验——发现——验证这种学习方法对我们的学习有很大的帮助,希望大家学习新本领时,经常想起这种方法,用好这种方法。
评析:整堂课的主体性学习,首先是长方形面积的计算方法的掌握,其次是学习“实验——发现——验证”的学习方法,后者的学习方法的指导对学生今后的发展来说更为重要。
五、应用深知、巩固深化
1.应用公式,计算长方形的面积。
(1)教科书第125页练习中的第1题。
(2)教科书第124页做一做。
2.应用公式,解决生活中的实际问题。
(1)回到导入题,出示游泳池的画面,给出数据,请学生计算游泳池池面的面积。
(2)师:长方形是一种很常见,很实用的图形,在我们的周围随时随地都可以看到长方形,比如,国旗的面,黑板的面等等,同学们想测量一下藏在我们身边的一些长方形的面积吗?同桌两个合作,找到长方形的面,进行测量,一边测量,一边把结果记录在测量纸上。
生测量后各组交流测量的情况。
师:看来,同学们通过这节课的学习,已经能够初步解决一些实际生活中的问题了,老师真为你们感到高兴。
(3)师:同学们,前两天,老师遇到了一件麻烦事,我办公桌上的一块台玻璃面积是24平方分米,不小心被打破了,我想配一块大小相等的玻璃,你们帮我算算看它的长和宽分别是多少呢?
生A:长8分米,宽3分米。
生B:长6分米,宽4分米。
师:你们是怎么知道的?
生C:只要想()×()=24(平方分米)
师:同学们真行,一下子帮钱老师想出了好几块面积相等的玻璃。可是钱老师要配的玻璃不光大小相等,形状也要相同,那它的长和宽究竟是多少呢?
生D:这块玻璃虽然碎了,但它的宽没有破损,所以只要先量出它的宽是多少,再用面积除以宽就能算出长是多少了。
师:这位同学生活经验真丰富,回答得好极了。
[评析:通过自主探究,获得长方形面积的计算公式后,教者设计了一些应用性练习,引导学生将获得的知识运用于实际生活,通过实际问题的解决,学生将书本知识转化为能力。整堂课临近结束之际,教者又创设了一个生活情境:玻璃被打破了,配置大小相等的玻璃,它的长和宽是多少呢?这是一个颇具开放性的问题,学生的思维有效地得到发散。学生思维发散后,教者话锋一转:玻璃的面积不光要相等,而且形状也要相同,它的长和宽究竟是多少呢?这个实际生活问题得以解决,既丰富了学生的生活经验,同时又提高了学生解决实际问题的能力。]
六、布置作业
板书:
总评:就目前小学数学课堂教学的现状来看,要很好地落实素质教育的要求,不但要从观念和方法层面进行改革,更要注重课堂教学模式的创新。作为教师首先应充分发扬教学民主,以民主合作化的教学,塑造富有主体性的人。在课堂上给学生创设自由、自主的学习活动空间,使学生的个性得到充分发展,主体精神和创新意识得到充分培养。其次,教师和学生在课堂上的活动,不论是教师的启发、提问,还是学生的讨论和动手实践。
教学内容
长方形面积公式推导,长方形面积的计算
教学目标:
1.推导和掌握长方形的面积公式。
2.会应用公式正确计算长方形的面积。
3.通过观察、探究等活动,感受长方形的面积计算在生活中的运用。
教学重点:
推导并掌握长方形的面积公式。
教学难点:
会应用长方形的面积公式解决实际问题。
教学过程:
一、复习导入:提问:
1.什么是面积?
2.面积单位有哪些?二探索新知:
1.出示一个长方形
提问:你能用什么方法计算下面长方形的。面积吗?引导:先用数方格的方法数出面积。
2.把长方形的长加长,宽不变,或者长不变,宽加长试想:长方形的面积与长方形的长与宽有关。
验证:学生课下用12张小正方形拼成长方形看看能拼成几种长方形?
课上教师提问有几种拼法?出示长方形图片让学生完成表格。
学生拼图并且回答表格问题引导得出结论:长方形的面积=长×宽三巩固运用
试一试:黑板的长是6米,宽是3米,黑板的面积是多少平方米?
学生自主练习,教师找学生回答。
练一练:出示长方形图片,让学生自主练习,巩固本节课内容。
四、课堂小结:这节课你学到了什么?
五、布置作业
教学目标
(一)初步理解长方形面积计算公式的推导过程,能正确地计算长方形的面积.
(二)在长方形面积计算公式的推导过程中,培养学生抽象概括能力及动手操作和解决实际问题的能力.
(三)在教学中渗透辩证思想、函数概念等.
教学重点和难点
重点:理解并掌握公式,能正确地计算长方形的面积.
难点:引导学生通过亲身实践推导公式.
教学过程设计
(一)复习准备
启发谈话:
上节课我们学习了面积和面积单位,老师给同学们留了一道思考题.如果我们要测量学校的操场面积,用一平方米的面积单位,一个一个地拼摆,可行吗?
(不可行)今天我们来研究科学地计算方法.(板书课题:)
(二)学习新课
1.动手操作,弄清基本关系:
每排个数、排数与总个数的关系.
请同学拿出1平方厘米的小正方形,摆出上面的长方形想:一排摆了多少个小正方形?一共摆了几排?
(学生操作时,老师把表格画在黑板上)
(一排摆几个小正方形、摆了几排、一共摆了多少个小正方形,它的面积是多少,老师依次在表格中板书出来)
请同学用1平方厘米的小正方形摆出上面这个长方形.
每排摆了几个?摆了几排?一共有多少个?你是怎样算出来的?
(每排个数×排数=总个数)
前面讲过有多少个面积单位,面积就是多少.所以可以用“面积”代替“总个数”,在表格图“总个数”下面写上“面积”(平方厘米).
下面就用简便方法计算长方形面积.
2.想象操作,弄清过渡关系:
长与每排个数、宽与排数的关系.
投影出示:C
思考:这个长方形长4厘米,沿着长边,一排可以摆几个1平方厘米的正方形?
不用动手摆,脑子里想一想.如果长方形长5厘米、10厘米……一排可以摆几个呢?
那么,你发现了什么?(两个同学互相说一说)
生:长几厘米,每排就摆几个.
师:那么就是说,长可以代替“每排个数”老师在表格中“每排个数”下面写出“长”(厘米).
再看,长方形的宽是3厘米,沿着宽可以摆这样的几排呢?
同学们不用动手摆,怎么知道可以摆3排呢?
能不能说出宽与排数的关系?
生:宽是几厘米,就可以摆成这样的几排.
师:那么,也就是说用“宽”可以代替“排数”.(老师在表格中,“排数”下面写上“宽”(厘米).
请同学们很快求出这个长方形的面积是多少?说说你是怎样算出来的.
3.理解长方形的面积与长、宽的关系.
投影出示:D
师:请同学们讨论一下,这个长方形的面积是多少?你是怎样求出来的?长方形的面积与它的长和宽有什么关系?
学生讨论后,老师引导学生对照表格,请仔细观察,再回忆一下,刚才的图A、图B、图C、图D.你发现了什么?
老师进一步引导学生,计算长方形面积的方法(最简单的)谁能概括出来?
学生总结归纳出:
长方形面积=长×宽(老师板书)
回顾一下,对照表格进行验证.
出示例题:
例:一个长5厘米,宽3厘米的长方形纸板,它的面积是多少?
师:用我们刚才学到的知识,请同学们自己解这道题.做完后,互相交换检查一下.
订正时,老师板书.
5×3=15(平方厘米)
答:它的面积是15平方厘米.
引导学生看书,质疑.
(三)巩固反馈
1.填表.(学生口答)
2.选择正确答案.
(1)一个长方形长6厘米,宽3厘米,面积是( ).
A.18厘米 B.18平方厘米
(2)一个长方形的长是8分米,宽是4分米,周长是( )
A.24分米 B.32平方分米
3.一个长方形花坛的面积是48平方米.问:它的长和宽分别可以是多少米?
长(米) 宽(米) 面积(平方米)
48 1 48
24 2
16 3
12 4
8 6
小结 这节课我们学习了什么?(.)要想求长方形的。面积,必须知道什么条件?(长和宽)怎样计算长方形的面积?(长×宽=面积)计算长方形面积应该注意什么问题?(长和宽的单位名称要先统一)
作业 :p.125练习二十八,第1,2题.
小资料 〔长方形〕
两组对边分别平行且有一个角是直角的四边形,叫做长方形(也叫做矩形).例如:下图是长方形ABCD.
长方形有如下的性质:
1.四个角都是直角,即∠DAB=∠ABC=∠BCD=∠CDA=90°.
2.两组对边分别相等,即AB=CD,BC=AD.
3.对角线相等并相互平分,即AC=BD, AO=CO,BO=DO.
4.对角线的交点是长方形的对称中心.
5.每一组对边中点连线都是长方形的对称轴.即EF和GH都是它的对称轴.
一般把长方形中较长的一边叫做长,与长相邻的一边叫做宽.如果长和宽分别用a和b表示,那么,长方形的周长c=2(a+b),面积S=ab.