乘法分配律教学设计(优秀8篇)

作为一名老师,总归要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?下面是小编辛苦为大家带来的乘法分配律教学设计(优秀8篇),如果能帮助到您,小编的一切努力都是值得的。

《乘法分配律》教学设计 篇1

教学目标

1、使学生理解乘法分配律的意义、

2、掌握乘法分配律的应用、

3、通过观察、分析、比较,培养学生的分析、推理和概括能力、

教学重点

乘法分配律的意义及应用、

教学难点

乘法分配律的反应用、

教具学具准备

口算卡片、投影仪、

教学步骤

一、铺垫孕伏

1、 口算、

(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4

2、 用简便方法计算、(说明根据什么简算的)

25×63×4

3、 师生比赛,看谁算得又对又快、

20×5+5×80 (1250+125)×8

让学生说明是怎样算的?

二、探究新知

1、导入:

刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容、(板书课题:乘法分配律)、

2、教学例6:

(1)出示例6:演示课件“乘法分配律”出示例6 下载

(2)引导学生观察每组的两个算式、

(3)教师提问:从上面的例子你发现了什么规律?

(4)学生明确:每组中的两个算式都可以用等号连接、

教师板书:(18+7)×6=150

18×6+7×6=150

(18+7)×6=18×6+7×6

(5)教师出示:20×(15+9)=480

20×15+20×9=480

20×(15+9)=20×15+20×9

学生分组讨论:每组中算式所表示的意义、

(6)反馈练习:按题要求,请你说出一个等式、(投影出示)

(__+__)×__=__+__×

教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

引导学生观察:等号左右两边算式的规律性

启发学生回答:首先是等号左边两个数的和同一个数相乘、

其次是等号右边两个加数分别同一个数相乘再把两个积相加、

最后是等号左右两边的两个算式相等、

3、教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变、这叫做乘法分配律、

4、反馈练习:

横线上能填几?为什么?

(32+35)×4=__×4+__×4

(62+12)×3=__×__+__×__

教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

根据练习学生从而得出: (a+b)×c=a×c+b×c

使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便、

5、教学例7:演示课件“乘法分配律”出示例7 下载

(1)出示例7:102×43

启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便、

教师板书:

(2)出示9×37+9×63

引导学生观察:这类题目的结构形式是怎样的?有什么特点?

教师提问:根据乘法分配律,可以把原式改写成什么形式?

根据学生的回答教师板书:9×37+9×63

=9×(37+63)

=9×100

=900

学生讨论:这样算为什么简便?

师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和、

②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数、

③另外两个不同的因数,是两个能凑成整十、整百、整千的加数、

(3)揭示教师算得快的奥秘

上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便、现在你们会了吗?

三、巩固发展 演示课件“乘法分配律”出示练习

1、 练习十四第1题、

根据运算定律在□里填上适当的数、

(43+25)×2=□×□+□×□

8×47+8×53=□×(□+□)

3×6+6×7=□×(□+□)

8×(7+6)=8×□+□×□

2、在横线上填上适当的数、

(1)(24+8)×125=__×__+__×

(2)25×(20+4)=25×__+25×__

(3)45×9+ 55×9=(__+__) ×__

(4)8×27+73×8=8×(__+__)

其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写、

3、把相等的算式用等号连接起来:

(1)32×48+32×52 32×(48+52)

(2)(24+8)×8 24×5+24×8

(3)20×(l+15) 0×17+20×15

(4)(40+28)×5 40×5+ 28

(5)(10×125)×8 10×8+125×8

(6)4×(30+25) 4×30×4×25

学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

4、选择题:

(1)28×(42+29)与下面的( )相等

①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

(2)与a×8-b×8相等的式于是( )

①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

(3)与(10+8+9)×5相等的式子是( )

①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

5、练习十四第4题,投影出示、

一辆凤凰牌自行车420元,一辆永久牌自行车405元、现在各买三辆、买凤凰车和永久车一共用多少元?

四、课堂小结

今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加、希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便、

五、布置作业

练习十四第3题、

用简便方法计算下面各题、

(80+8)×25  35×37+65×37

32×(200+3) 38×29+38

板书设计

《乘法分配律》教学设计 篇2

教材简析:

能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。

教学目标:

1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。

2、让学生学习应用估算的方法判断计算结果的合理性。

3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。

教学过程:

一、讲解学生作业错得较多的题目

1、99×37+37=37×(□○□)

指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”

2、把左右两边相等的算式用线连起来

11×58+49×11   12×77+8×77

(12+8)×77    36×25+4×25

(58+12)×14   27×21+27×29

27×(21+29)   11×(58+49)

(36×4)×25   58×14+12

先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?

(1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的。

(2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。

二、学习例题

1、出示例题图

说说例题的信息和问题,说说相关的数量关系式。

2、列式并估算等:32×102≈3200(元)

说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。

还可以怎么算?(用竖式算)

3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?

(加上2件),这2件是多少元呢?总共是多少元?

怎么把这个过程完整地用算式表达出来呢?

板书:32×102

=32×(100+2)

=32×100+32×2

=3200+64

=3264(元)

指出:利用乘法分配律,我们可以把这类题目进行简便计算。

学生完成书上的例题剩下部分。

4、完成试一试:用简便方法计算46×12+54×12

观察算式特点,并完成简便计算。交流:=(46+54)×12

=100×12

=1200

比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?

(有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)

三、完成想想做做

1、在□里填上合适的数,在○里填上运算符号(题略)

学生独立完成,再校对。

2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)

学生说出口算的过程,体会也是运用了乘法分配律。

3、读第5、6题,观察数据的特点,说说怎么算才更简便?

四、探索思考题

99×99+199○100×100

观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?

在交流过程中完成板书

99×99+199

=99×99+99×1+100

=99×(99+1)+100

=99×100+100×1

=100×(99+1)

=100×100

学生自己尝试完成算式:999×999+1999的探索过程

发现规律,直接完成算式:9999×9999+19999=( )×( )

五、布置作业

p.57第2、4、5、6题

乘法分配律教学设计 篇3

教学目标:

1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重难点:

发现并理解乘法分配律。

教学准备:挂图、小黑板。

教学流程:

一、创设情境,导入新课。

师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

看看买什么衣服好看呢。

二、自主探索,合作交流。

1.出示:买5件夹克衫和5条裤子,一共要付多少元?

师问你打算怎样算?

生口答师板书:

(65+45)×565×5+45×5

请学生分别说清两道算式的含义。

2.师问猜想一下,这两道算式的结果会怎样?

要验证我们的。算式是否正确,应该用什么方法?

生计算,个别板演。

证明这两道算式的结果是相等的。

中间应用“=”接连。

3.生读算式(65+45)×5=65×5+45×5

师问等号两边的算式有什么相同和不同?

生同桌说一说,并汇报。

4.这两道算式相等是一种巧合还是有规律的呢?

出示:(2+10)×6=2×6+10×6

(5+6)×3=5×3+6×3

师问中间可以用“=”来连接吗?

5.小组讨论:这三组等式左边有什么特点?

右边有什么特点?

生汇报。

6.师问你能写出具有这样规律的等式吗?

生独立写一写,个别板书。

7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

生写一写,个别板演。

8.揭题:乘法分配律

(a+b)×c=a×c+b×c

9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

三、巩固练习,拓展应用。

想想做做:

1.在口里填上合适的数,在○里填上运算符号。

(42+35)×2=42×口+35×口

27×12+43×12=(27+口)×口

15×26+15×14=口○(口○口)

72×(30+6)=口○口○口○口

强调:乘法分配律,可以正着用,也可以反着用。

2.横着看,在得数相同的两个算式后面画“√”

(28+16)×728×7+16×7

15×39+45×39(15+45)×39

74×(20+1)74×20+74

40×50+50×9040×(50+90)

3.算一算,比一比,每组中哪一道题的计算比较简便。

(1)64×8+36×825×17+25×3

(64+36)×825×(17+3)

让学生体会乘法分配律可以使计算简便。

4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

生独立完成并汇报。

5.你能根据下图列出两

道综合算式吗?

上面的两道算式能组成一个等式吗?

四、全课小结

师问今天你有什么收获?和你的小伙伴说一说。

五、课堂作业

《补充习题》第26页。

乘法分配律教学设计方案 篇4

设计说明

教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:

1.游戏激趣,设置悬念。

在游戏中学习,体现了玩中学,做中学的理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。

2.观察、比较,举例验证猜想。

在学习新知的过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的过程,从而积累丰富的探究数学知识的经验。

3.多角度练习,强化认识和理解。

小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的延伸。

课前准备

教师准备多媒体课件

教学过程

⊙游戏激趣

1.比赛热身。

师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。

师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。

(1)9×37+9×63 (2)9×(37+63)

2.评出胜负。

师:做完的同学请举手,汇报计算过程。

师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?

预设

生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9×37+9×63=9×(37+63)。

师:同学们说得非常好,尤其是__,我们就先将他的这个发现命名为__猜想。

设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。

⊙引导探究,发现规律

1.课件出示例7。

一共有多少名同学参加了这次植树活动?

(1)需要知道哪些条件?请在情境图里找一找。(出示情境图)

(2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)

(3)小组讨论,尝试用不同的方法解决问题并板书。

引导各小组汇报解题方法,并说明这样解题的理由。

解法一(4+2)×25

=6×25

=150(名)

(4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)

解法二4×25+2×25

=100+50

=150(名)

(4×25是求25个小组一共有多少名同学负责挖坑、种树,2×25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)

2.观察算式,探究发现。(见课堂活动卡)

(1)小组合作,讨论探究。

①两道算式有什么相同点?

②两道算式有什么不同点?

③两道算式有什么联系?

《乘法分配律》优秀教学设计 篇5

教学内容

P36页例3,做一做,练习六习题。

教学目标

1、知识与技能:引导学生探究和理解乘法分配律。

2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

教学重点

乘法分配律的意义和应用。

教学难点

乘法分配律的反应用。

教学过程

一、目标导学

(一)导入新课

1、复习导入

(8+2)×1258×125+2×125

2、揭示课题:乘法分配律

(二)展示目标(见教学目标1、2)

二、自主学习

(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)

1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?

2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?

3、计算这两道题你发现了什么?能用一句话概括吗?

4、这是乘法的什么运算律?用字母怎样表示?

5、会用简便算法计算4×25+6×25吗?

(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)

(三)自学检测

下面哪些算式运用了乘法分配律?

117×(3+7)=117×3+117×7

24×(5+12)=24×17

(4+5)×a=4×a+5×a

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

(二)师生互探

1、解答各小组自学中遇到不会的问题。

2、针对自学提纲5题请不同方法同学汇报。

3、结合“自学提纲”引导学生归纳总结:(并板书)

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。

四、达标训练(1、2题必做,3题选做、4题思考题)

1、下面哪个算式是正确的?正确的打√,错误的打×。

56×(19+28)=56×19+28()

32×(7+3)=32×7+32×3()

64×64+36×64=64×(64+36)()

2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数

⑴25×(200+4)⑵35×201

25×200+25×435×200+35

⑶265×105—265×5⑷25×11×4

265×(105—5)11×(25×4)

3、用乘法分配律计算。

103×2020×5524×205

4、在()里填上适当的数。

167×2+167×3+167×5=167×()

28×225—2×225—6×225=()225

39×8+6×39—39×4=()×()

五、堂清检测

(一)出示检测题(1-2题必做,3题选做,4题思考题)

1、用简便方法计算。

24×75+24×25125×22—125×14

(25+20)×435×99+35

2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?

3、计算。

89×10135×36+35×63+35

4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?

(二)堂清反馈:

作业布置

练习册相关习题。

板书设计

乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25(2)4×25+2×25

=6×25=100+50

=150(人)=150(人)

(4+2)×25=4×25+2×25

(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

《乘法分配律》教学设计 篇6

教学内容:青岛版四年级下册第24-25页红点内容 信息窗2 第1课时

教学目标:

1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。

2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。

3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重点:

理解和掌握乘法分配律的推导过程。

教学难点:

理解和掌握乘法分配律的推导过程。

教学准备:

课件,卡片(课前发给学生)

教学过程:

一、拟定自学提纲

自主预习

1. 创设情境:(多媒体出示24页情境图)

教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?

(学生可能提出 济青高速公路全长大约多少千米?

相遇时大巴车比中巴车多行多少千米?)

(教师把这两个问题板书在黑板上。)

教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。

2. 出示学习目标:这节课的学习目标是:(多媒体出示)

(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。

(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。

教师引导:有信心达到这两个目标吗?(有!)

老师的指导会对你们的学习有很大的帮助,请看自学指导:

3. 出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考:

(1)如何求济青公路的全长,有几种解法,如何列式计算。

(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?

(3)什么叫乘法分配律,如何用字母表示?

5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)

4. 学生按自学指导自学,教师巡视,关注学困生。

二、汇报交流 评价质疑

调查学情:看完的同学请举手!看会的请放下。

1.小组交流:

学习中你有哪些收获、困惑和体会,请在小组内交流一下。

2.班内汇报:

师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。

课堂生成预设:

(1)济青高速公路全长大约多少千米?

教师追问:第一种算法是先算什么,再算什么?第二种算法呢?

预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;

预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)

(2)相遇时大巴车比中巴车多行多少千米?

(110-90)×2 110×2-90×2

=20×2 =220-180

=40(千米) =40(千米)

教师追问:你能说说两种算式的意思么?

预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;

预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。

(3)观察、比较两种算法的过程和结果,你有什么发现?

预设一:第一种算法是先加(或减)再乘;

预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。

(4)据此,你有什么猜想?

预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

(5)怎样验证你的猜想呢?

(师用线段图帮助学生理清思路)

学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。

通过观察,有何发现?引导学生回答:

举例验证:(125+12)×8 = 125×8+12×8

(40-4)×25 = 40×25-4×25

(8+16)×125 = 8×125+16×125

(80-8)×125 = 80×125-8×125

…… ……

(6)通过验证,你能得出什么结论?

结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。

(板书课题)你会用字母表示这个规律吗?

(用字母表示:(a± b) c=ac±bc)

三、抽象概括 总结提升

1.通过以上研究,你得到了什么结论?

课堂预设:

预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。

预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。

预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

预设四:这个规律叫乘法分配律,可以用字母表示为:

(a± b) c=ac±bc

2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?

课堂预设:

举例验证:(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

…… ……

教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

设计意图:将乘法分配律适当拓展

3.在记忆这个规律时,应该注意什么?

【设计意图】帮助学生理解、记忆乘法分配律,避免常犯的错误。

课堂预设:

预设一:括号里的每一个数都要乘括号外的数。

预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。

预设三:这个规律还可以倒过来看。

教师追问:怎样倒过来看?

预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。

四、巩固应用 拓展提高

教师引导:怎么样?学会了吗?想不想挑战一下自己?

1.考一考(课件出示第26页第2题)

(1) 指4名学困生板演,其余同做在练习本上。

(2) 展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。

课堂预设:(以第一题为例)

(80+70)×5 ( 80+70)×5

=80×70+70×5 =80×5+70×5

2.议一议

(1)你认为谁的答案对,为什么?谁的答案不对,为什么?

(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。

(3)用同样的方法评议其余3题。

(4)同桌互改

(5)统计错题情况,让小组代表说说错误原因。

(6)学生各自订正错题。

3.全课小结:你在本节课中有什么收获?

课堂预设:

预设一:我知道了什么是乘法分配律。

预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。

预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!

五、当堂训练

1.出示课本第26页第3题

2.《新课堂》第17到第19页信息窗2第1课时内容。

同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。

板书设计

乘法的分配律

济青高速公路全长大约多少千米? 相遇时大巴车比中巴车多行多少千米?

(110+90)×2=110×2+90×2 (110-90)×2=110×2-90×2

验证:

(125+12)×8 = 125×8+12×8 (40-4)×25 = 40×25-4×25

(8+16)×125 = 8×125+16×125 (80-8)×125 = 80×125-8×125

结论:用字母表示:(a± b) c=ac±bc)

(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

拓展:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

使用说明:

1.教学反思

乘法分配律是第二单元的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用相遇问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:

(1)引入生活问题,激趣探究。在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(125+12)×8 = 125×8+12×8这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。

(2)提供学生独立探究的机会。我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。

(3)为学生的学习方式的转变创设了条件。为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。

不足之处:

(1)本课堂我的教学程序是:先出示情景图,根据情景图上所给的信息列出算式:并且让学生说说这两个算式的含义,然后让学生读读这个算式(意图是让学生去感知乘法分配律),然后再让学生去写出两个类似的算式(意图是让学生体验乘法分配律)写完之后再板书几个同学所写的算式并选取期中一个同学的算式让他说说算式的左边为什么等于右边(110+90)×2=110×2+90×2);而且我还要求同学们用不同的方法来说(意图是让不同层次的同学们都能反复去感知乘法分配律),通过刚才的几道程序,然后再让同学们去总结这类算式左边和右边的特点,得出乘法分配律,最后通过练习巩固和加深同学们对乘法分配律的认识。原以为这样上会有一个比较好的效果,但是事与愿违,在要同学们独立写出两个类似的算式时,发现有小部分同学并不会写,所以本堂课后面部分上得就不怎么顺畅了。课后向老师请教得知,原来我的教学程序上出现问题了----违背了学生的认知规律,应该是先由老师引导学生总结出乘法分配律,再让学生写出类似的算式,体验乘法分配律,最后再通过练习巩固和加深学生对乘法分配律的认识。

(2)在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。

(3)在学生总结出乘法分配律的概念时,我只是一笔带过的把乘法分配律通过课件再展示给学生们看了一遍,没有反复强调乘法分配律的特点,导致学生没有较好的掌握乘法分配律。

2.使用建议:

(1)教师在创设情境时一定要激发学生探索的愿望。学生在情境的引导下,主动实现对数学知识的认识和理解。

(2)在练习时采用小组活动是必须的,这样学生之间可以互帮互助,共同进步。激发学生的学习热情。练习时一定要给学生足够的讨论时间。

(3)订正汇报时,让学生之间相互评价。

3.急需解决的问题:如何使课堂更加实用高效?如何解决学生运用乘法分配律进行简便计算的“漏乘”问题?

《乘法分配律》优秀教学设计 篇7

教学内容

《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。

教材简析

本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。

教学目标

1、结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。

2、学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。

3、学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。

教学重点

让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。

教学难点

清楚地表述自己发现的规律,理解及应用乘法分配律。

教学过程

一、创设情境,感知规律

1、提出问题,列出算式。

出示情境图

谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?

信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。

问题预设:济青高速公路全长约多少千米?(板书)

谈话:请你试着用两种方法在答题纸上解答。

生独立解答。

预设:

2、结合情境,感知规律。

提出要求:结合线段图说说算式每一步的含义。

回答预设:

①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。

②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。

设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。

二、研究素材,猜测规律

教师引导学生观察算式谈发现。

预设发现:两个算式结果相等。可以用等号连接。

教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。

预设区别:

①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。

②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。

谈话:根据前面运算律的学习,你有什么想法?

预设回答:这可能又是一个规律。

设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。

三、讨论交流,验证规律

1、举例验证规律。

谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。

学生独立计算举例。

指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。

谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。

预设举例:(25+35)×4=25×4+35×4

(60+50)×2=60×2+50×2

(65+55)×42=65×42+55×42

教师引导学生发现像这样的例子举不完,可以用省略号表示。

2、观察几组等式的相同点。

教师引导学生观察这几组等式的左边和右边分别有什么相同点。

预设回答:

①这几组等式的左边都是两个数的和乘一个数。

②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。

3、总结规律。

教师引导学生用自己的话说说这个规律。

谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。

教师出示乘法分配律。

谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。

生按要求说什么是乘法分配律。

谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?

预设回答:可以用字母表示。

教师要求学生在答题纸上试着用字母abc来表示乘法分配律。

学生试着在答题纸上写字母表达式。

指生板演(a+b)c=ac+bc。

谈话:对于乘法分配律用字母来表示,感觉怎么样?

预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!

教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。

设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。

四、巩固拓展,应用规律

1、连一连。

2、在□里填上合适的数或字母。

3、火眼金睛辨对错。

《乘法分配律》教学设计 篇8

教学内容:

教科书书第54的例题以及55页的“想想做做”。

教学目标:

1、让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。

2、让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的'联系。

3、让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重点和难点:

发现并理解乘法分配律。

教学准备:

多媒体课件。

教学过程:

一、复习旧知,作好铺垫

同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)

今天这节课,我们要来研究乘法的另外一个运算定律。

二、联系实际,探究规律

1、谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!

2、课件例题情景图。

(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)

(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?

指名说出算式,教师随学生回答板书:

(65+45)×5 65×5+45×5

让回答的两名学生说说自己的想法。(即先算的是什么。)

第一个算式:先算买一套衣服用多少元。

第二个算式:先算买5件夹克衫和5条裤子各用多少元。

(3)猜一猜:这两个算式结果会怎样?(相等)

(4)计算验证。

师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。

集体交流,指名汇报计算过程。

(5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)

3、探索、发现规律。

(1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。

同桌讨论交流,指名汇报,鼓励学生自由发表意见。

(学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)

(2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。

(3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?

指名举例,计算算式结果,得出等式,教师板书。

师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)

学生汇报验证的结果。 教师结合学生回答板书三个等式。

问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?(板书:……)师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。

(4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)

(5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。

展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。

表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)

师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。

三、应用规律,巩固练习

1、对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题) 横着看,在得数相同的两个算式后面画“√”。

学生自己判断。集体交流时指名说说是怎么判断的?

第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。

问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?

2、掌握得真不错!下面打开书看55页“想想做做”第1题。

学生独立填写后,指名汇报。

讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!

3、完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)

问:图上给我们提供了长方形菜地的什么信息?

你会用两种不同的方法计算它的周长吗?

(1)学生完成在自备本上,指名板演两种不同的方法。

(2)集体交流,出示:(64+26)×2 64×2+26×2

师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?

师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。

4、完成“想想做做”第4题。

出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?

比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。

学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?

(估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)

这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)

指名说计算过程,教师用课件展示简算过程。

小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。

5、谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?《·》

学生独立完成在自备本上,投影展示不同的算法。

观察这个等式,你有什么想告诉大家吗?

师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!

四、总结回顾

问:今天这节课,你有什么收获?

五、课堂作业

完成“想想做做”第5题。

教后反思:

乘法分配律是在学生学习了乘法交换律、结合律的基础上教学的,这是四年级学习的重点,也是难点之一。本节课我比较注重从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。首先我先创设了设计买衣服的情景,出示了例题图,让学生尝试通过不同的方法得出结果,再让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接,使之让学生从中感受了乘法分配律的模型,而后让学生作出一种猜测:是不是所有这样的两道算式之间都有这样的联系呢?是不是符合这种形式的两个算式都是相等的?此时,我不是急于告诉学生答案,而是让学生自己通过举例加以验证。学生兴趣浓厚,这里既培养了学生的猜测能力,又培养了学生验证猜测的能力,从而让学生知道乘法分配律给大家计算带来的便利,从而引出乘法分配律的概念和字母形公式。

在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。出示一些扩展型的练习:由(17+8+15)×60让学生明白乘法分配律也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为以后利用乘法分配律进行简算埋下伏笔。

当然在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还是不够,另外还有部分学困生对乘法分配律不太理解,运用时问题较多,在本节课中的一些具体的环节中也还缺乏成熟的思考,对学生的积极性没有很好的充分调动起来,这些在以后的教学中都要多加注意。

一键复制全文保存为WORD