平行四边形教案【优秀8篇】

在教学工作者开展教学活动前,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。我们该怎么去写教案呢?这次为您整理了平行四边形教案【优秀8篇】,您的肯定与分享是对小编最大的鼓励。

八年级数学教案:《平行四边形》 篇1

教学目标

1、使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高。

2、通过观察。动手操作,培养学生抽象概括能力和初步的空间观念。

教学重点

掌握平行四边形的意义及特征。

教学难点

理解平行四边形与长方形。正方形的关系。

教学过程

一、复习准备。

我们已经学过一些几何图形,观察一下这些图形有什么共同特点?

在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形。

教师提问:我们学过哪些四边形呢?

学生举例。

说说哪些物体表面是平行四边形?

教师出示下图,让学生初步感知平行四边形。

二、学习新课。

1、理解平行四边形的意义。

首先出示一组图形。

教师提问:这些图形是什么形?它们有什么特征?

(1)看到这个名称你能想到什么?(板书:平行。四边形)

教师提问:你认为什么是四边形?你学过的什么图形是四边形的?

(2)动手测量。

指名到黑板上用三角板检验一下,每个图形的对边怎样。

(3)抽象概括。

根据你测量的结果,能说说什么叫平行四边形吗?

小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义。(板书:两组对边分别平行的四边形叫做平行四边形。)

教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”。

(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】

2、平行四边形的特征和特性。

(1)教师演示。

教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉。引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?

学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角。

(2)动手操作。

学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行。

(3)归纳平行四边形特性。

根据刚才的实验。测量,引导学生概括出:平行四边形具有不稳定性。(板书:易变形)

(4)对比。

三角形具有稳定性,不容易变形。平行四边形与三角形不同,容易变形,也就是具有不稳定性。

这种不稳定性在实践中有广泛的应用。你能举出实际例子来吗?

(如汽车间的保护网,推拉门。放缩尺等。)

3、学习平行四形的底和高。

(1)认识平行四边形的底和高。

教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。这条对边叫做平行四边形的底。

(2)找出相应的底和高。【继续演示课件“平行四边形”】

引导学生观察:图中有几条高?它位相对应的底各是哪条线段?

使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC。

(3)画平行四边形的高。【继续演示课件“平行四边形”】

教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法。从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高。这里高要画在平行四边形内,不要求把高画在底边的延长线上。

①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形。(还可以把平行四边形变成长方形)

引导学生比较长方形和平行四边形的异同点,使学生明确:

相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形。不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形。

②引导学生比较正方形和平行四边形的相同点和不同点。

使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形。因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形。

③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】

三、巩固练习。【继续演示课件“平行四边形”】

1、判断下列图形哪些是平行四边形?

2、指出平行四边形的底,并画出相应的高。

3、在钉子板上围出不同的平行四边形。

4、数一数下图中有( )个平行四边形。

四、教师小结。

1、提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)

2、组织学生对所学知识提出质疑,并解疑。

3、教师提问:我们已学过的长方形。正方形是平行四边形吗?它们有什么关系?(因为长。正方形也具备平行四边形的特点所以长。正方形是特殊的平行四边形)

五、布置作业。

1、用一套七巧板拼出不同的平行四边形。

2、在下面每个平行四边形中分别画出两条不同的高。

平行四边形教案 篇2

一、素质教育目标

(一)知识教学点

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

2.使学生理解判定定理与性质定理的区别与联系.

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

(二)能力训练点

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

(三)德育渗透点

通过一题多解激发学生的学习兴趣.

(四)美育渗透点

通过学习,体会几何证明的'方法美.

二、学法引导

构造逆命题,分析探索证明,启发讲解.

三、重点·难点·疑点及解决办法

1.教学重点:平行四边形的判定定理1、2、3的应用.

2.教学难点:综合应用判定定理和性质定理.

3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理(强调在求证平行四边形时用判定定理,在已知平行四边形时用性质定理).

四、课时安排

2课时

五、教具学具准备

投影仪,投影胶片,常用画图工具

六、师生互动活动设计

复习引入,构造逆命题,画图分析,讨论证法,巩固应用.

七、教学步骤

【复习提问】

1.平行四边形有什么性质?学生回答教师板书

2.将以上性质定理分别用命题的形式叙述出来.

【引入新课】

用投影仪打出上述命题的逆命题.

上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法).

那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).

【讲解新课】

1.平行四边形的判定

我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?

如图1,在四边形中,如果,那么.

∴.

同理.

∴四边形是平行四边形,因此得到:

平行四边形判定定理1:两组对角分别相等的四边形是平行四边形.

类似地,我们还会想到,两组对边相等的四边形是平行四边形吗?

如图1,如果,,连结,则△ ≌△得到,,那么,,则四边形是平行四边形.

由此得到:

平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.

(判定定理1、2的证明采用了探索式的证明方法,即根据题设和已有知识,经过推理得出结论,然后总结成定理).

我们再来证明下面定理

平行四边形判定定理3:对角线互相平分的四边形是平行四边形.

(该定理采用规范证法,如图1由学生自己证明,教师可引导学生用前面三种依据分别证明,借以巩固所学知识)

2.判定定理与性质定理的区别与联系

判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.

例1已知:是对角线上两点,并且,如右图.

求证:四边形是平行四边形.

分析:因为四边形是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用定义或判定定理1、2都可以,还可以连结交于利用判定定理3简单.

证明:(由学生用各种方法证明,可以巩固所学过的知识和作辅助线的方法,并比较各种证法的优劣,从而获得证题的技巧).

【总结、扩展】

1.小结:(投影打出)

(1)本堂课所讲的判定定理有

(2)在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.

2.思考题

教材P144B.3

八、布置作业

教材P142中7;P143中8、9、10

九、板书设计

xxx

十、随堂练习

教材P138中1、2

补充

1.下列给出了四边形中、 、的度数之比,其中能判定四边形是平行四边形的是()

A.1:2:3:4 B.2:2:3:3

C.2:3:2:3 D.2:3:3:2

2.在下面给出的条件中,能判定四边形是平行四边形的是()

A.,B.,

C.,D.,

3.已知:在中,点、在对角线上,且.

求证:四边形是平行四边形.

平行四边形教案 篇3

教材简析:

1.紧密联系学生已有经验,通过丰富的学习活动,帮助学生直观认识常见的平面图形。教材通过折正方形纸,让学生直观认识三角形,把两个完全相同的三角形拼成一个平行四边形,直观地认识平行四边形。这样安排,既符合低年级学生的认知特点,也有利于他们主动地认识平面图形。

2.把图形的变换,图形间的联系放在重要位置。教材只要求学生直观认识三角形、平行四边形,没有深入研究它们的特征。但是教材安排了许多折、剪、拼的活动,比较多地将一种图形变换成另一种图形。这些操作活动,能使学生感受图形之间的联系,有利于培养学生空间观念和解决问题的能力,有利于发展学生的。数学思维。

3.教材设计了一些开放性问题,如在钉子板上围三角形、平行四边形,围成的这些图形可以有大有小,有不同的位置,用一个长方形剪成两个完全一样的三角形拼一拼,可以拼成多种图形。这些题能激起学生独立探索的精神,相互合作的愿望,有利于改善教学方式,培养学生的创新意识。

教学目标:

1.通过把长方形成或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道三角形和平行四边形的名称,并能识别三角形、平行四边形,初步了解三角形、平行四边形在日常生活中的应用。

2.在折图形、剪图形、摆图形、拼图形等活动中,使学生体会图形的变换,发展对图形的空间想像能力。

3.使学生在学习活动中积累对数学的兴趣,增强与同学的交往、合作的意识。

教学重点与难点:从三角形、平行四边形实物中抽象出平面图形,并让学生正确认识它们。

教具准备:长方形、正方形纸各一张,不同形状的三角形、平行四边形若干个,剪刀一把,钉子板和20页上半页的图片。

学具准备:长方形纸、正分形纸、直角三角形纸若干张、剪刀、学具盒。

教学过程:

一、游戏激趣,创设情境

小朋友,你们喜欢折纸吗?你们想折吗?今天老师就和你们一起玩折纸游戏好吗?

二、动手操作,探索新知

1.折一折,认识三角形

(1)教师手中拿的是什么图形的纸?(正方形纸)请小朋友们拿出和老师手中一样的正方形纸,你能把这张正方形的纸对折成完全一样的两部分吗?(教师巡视,如有学生对对折不理解要及时指导。)

(2)展示成果。

哪位小朋友愿意上来说一说你是怎样折的?

①对折成两个完全一样的长方形。(这是我们已经认识的)

②对折两个完全一样的三角形。(贴出图形)问:这是什么图形?(板书:三角形)

平行四边形的认识教案 篇4

教学目标:

1、通过观察、讨论、测量、探索等数学活动,认识平行四边形的特征,了解其特性。

2、在探索平行四边形的特征的过程中,发展学生初步的空间观念。

3、在探索学习活动中,发展实践能力和创新意识,并学会与他人合作。

4、让学生通过亲身参与探索实践活动,去获得积极的情感体验和成功体验。

教学设想:

“自主探索发展学习”,旨在改变教与学的方式。教师的教是为学生的自主学习,主动探究创造条件,是让学生真正在探索学习中发展,因此,我设计“平行四边形的认识”这节课,对现行教材进行创造性处理,努力为学生创设一个广阔的活动空间,探索空间,让学生最大限度的参与探索平行四边形的特征的全过程,具体设计以下几个探索活动。

探索活动1:从各种各样的实物形体中找出平行四边形的实物,然后探索平行四边形的特征。

探索活动2:探索发现“平行四边形”的共同特点。让学生利用自己所带的材料借助自己的思维去发现这一共同特点,学生通过自己动脑思考,探索出多种发现的方法,有困难的,小组共同研究,共同探索。

探索活动3:探索发现平行四边形的特性活动,根据小学生好动、好玩、好奇的特点,设计了小组合作制作一个平行四边形的框架和三角形的框子,通过让学生动手拉发现二者的不同特性。

探索活动4:拼摆平行四边形,学生在拼平行四边形的小组活动中,合作竞赛,课堂气氛活跃,学生的创造性思维得到发展。

教学过程:

一、创设问题情境。

1、同学们把你找的周围四边形的物体,想大家做个汇报。

2、演示:出示以下图形

3、这些四边形有什么共同特点?

长方形

4、在这些四边形中我们已经研究过那几种图形?他们各有那些特征?他们之间有什么关系?

正方形

板书:

二、自主探索,合作交流。

1、以四个同学为一组,观察平行四边形的图形,探索平行四边形的共同特点。

(1)学生用自己喜欢的方法去探索平行四边形的特点。

(学生拿出准备好的平行四边形图用直尺、三角板、量角器等工具来测定)

(2)小组汇报,学生互相评价

汇报1:通过用三角板和直尺测出两组对边分别平行

汇报2:用直尺量两组对边分别相等

汇报3:用量角器和对比的方法,测出对角也相等。教师用事物演证这一特点。

2、认为什么样的图形叫平行四边形?

3、看书、质疑。

4、小组合作探索

平行四边形

平行四边形与长、正方形的关系

长方形

正方形

小组讨论,自己画出关系图

小组汇报、展示画的图形

5、小组合作探索平行四边形的特征。

(1)小组合作用自己制作的平行四边形和三角形,拉动后发现了什么?

(2)小组汇报实验结果

教师验证、板书:容易变形

三、实验应用,拓展创新。

1、说出日常生活中,那些地方利用了平行四边形易变形的特征?自己根据今天学的知识进行小发明、小创造。

2、用塑料拼板拼平行四边形

(分组合作拼摆,展示拼摆的结果)

四、评价体验。

1、评价本节课自己及其同学的表现。

2、学习“平行四边形的认识”这课后,可以帮助你解决那些平时遇到的问题。

五、教学反思

本节课根据数学课程标准的基本理念,精心设计学生的数学活动,努力改善学生的学习方式,主要有以下特点:

1、设计活动,激发兴趣。教学过程中,注重选择富有儿童情趣的学习材料和活动内容,激发学习兴趣,获得愉快的数学学习体验。如在导入新课时,教师创设问题情境,让学生找周围的四边形物体,巧妙引导学生回顾前面学习的长方形、正方形,自然过渡到平行四边形的认识。在探索阶段,让学生在实践活动中,经历、体验数学知识的形成过程。在巩固拓展时,创始了让学生“辨、拼、说”的活动,课堂上学生始终乐此不疲,兴趣盎然。

2、独立思考,有效合作。本节课教学中,教师注重把思考贯穿教学的全过程,将实践与思考贯穿教学的全过程,让学生在观察实践交流中思考,尤其是特别注重为学生创设独立思考的时空。教学中,无论是学生“观察发现”,或是“探索创新”,或是“深化巩固”,或是“联系实际”,都先让学生独立思考,再进行小组合作或再组织讨论交流。这样学生有话可说,有话能说,充分发挥学生的积极性。

3、改善策略,创新思维。教学时有意识地为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。第一,设计学生喜欢又富有挑战性的问题,激发学生主动思考和创造的欲望。教学时这样设问:“用自己喜欢的方法去探索平行四边形的特点。”学生经过积极、自主的思考、实践,创造了不少的方法。第二、提供材料,让学生在实践中进行“再创造”。课前教师为每组学生准备平行四边形和三角形,课中引导学生利用手中的材料“做数学”,在做中创新,在做中“再创造”。第三、为学生提供比较充足的探索与创造的空间,学生在数学活动中进行再创造,实现了真正的数学学习。

平行四边形 篇5

第二课时:平行四边形面积的计算练习课

教学内容:练习二1 — 5题

教学目标:使学生进一步熟悉平行四边形的面积公式并能熟练地加以运用。

教学过程:

练习二:

第1题:使学生画出的平行四边形面积与图中长方形面积相等,平行四边形底与高的乘积为15。所画平行四边形的底和高分别为5和3、3和5或15和1。

第2题:学生在测量时一定要注意底和高必须是对应的一组。

第3题:要告诉学生用途中标出的数据计算出来的面积是近似值。这种近似的测量和计算在实际生活中经常用到。

第5题:可以让同桌两人分别准备一样大小的长方形框架。操作时,一个长方形不动,另一个长方形拉成平行四边形。通过观察、比较后要明确两点:

1、把长方形拉成平行四边形后,周长没变,面积变了。

2、拉成的平行四边形越是显得扁平,它的高就越短,面积就会越小

平行四边形教案 篇6

教学

目标综合运用平行四边形的性质和四边形是平行四边形的条件解决问题

重点

难点平行四边形的有关性质和四边形是平行四边形的`条件的灵活的运用。

导学过程教师复备

(学生笔记)

复习回顾

1.平行四边形有哪些性质?

2.判别四边形是平行四边形的条件有哪些?

3.平行四边形的性质与条件的区别?

例题精讲

例1、如图,在□ABCD中,点E、F分别在AB、CD上,AE=CF.四边形DEBF是平行四边形吗?为什么?

例2、如图,□ABCD的对角线相交于点O,直线EF过点O分别交BC、AD于点E、F,G、H分别为OB、OD的中点,四边形GEHF是平行四边形吗?为什么?

反馈练习

1.如图,在□ABCD中,AB=5,AD=8,∠A、∠D的角平分线分别交BC于E、F,则EF=__________(在右边写出过程)

2.如图,在□ABCD中,过其对角线的交点O,引一条直线交BC于E,交AD于F,若AB=2.4CM,BC=4CM,OE=1.1CM。则四边形CDFE的周长为多少?

3.如图,在□ABCD中,点E、F在对角线BD上,且BE=DF.四边形AECF是平行四边形吗?请说明你的理由。

平行四边形教案 篇7

1.引导学生通过观察、讨论感知生活中的平行现象。

2.帮助学生初步理解平行是同一平面内两条直线的位置关系,初步认识平行线。

3.培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。

[教学重点]正确理解“同一平面内 ”“互相平行”等概念,发展学生的空间想象能力。

[教学难点]画平行线

[教具、学具准备]课件,水彩笔,尺子,三角板,小棒。

[教学过程]

一、创境引入,观察发现

生开窗户。

开窗户过程中,这扇窗户在做什么运动呢?

是的,平移是我们上个学期学过的知识,你们学得很好。我们看,窗户的一条边一开始在这个位置;平移之后,到了这个位置。你知道这条边与这条边的位置之间有什么关系吗?

这节课就让我们一起来学习平行线。

老师这里有几幅图,请同学们找一找,哪些图画出了你心目中的平行线?

看来,同学们对平行线都有自己的认识。到底你的想法对不对呢?,学完这节课后,相信你一定能得到一个肯定的答案。

二、积极参与,探究感受

窗户这两条直直的边我们可以看成是两条线段,这条线段如果向两端无限延伸、延伸。闭上眼睛想象一下,你看到的两条直线会怎样?会相交吗?

师:都说眼见为实,这两条直线我看到的部分的确是不相交的,可是无限延伸之后我看不到,你凭什么说他们永远不会相交呢?

宽度一样,其实就是说他们的距离处处相等。(课件验证)

因为他们的距离处处相等,无限延伸之后始终保持着这样的距离,所以,他们永远不会相交。

(板书并口述:永不相交的两条直线相互平行)

两条直线相互平行,我们也可以说其中一条就是另一条的平行线。

如果我们把两条直线分别标上名字,ab和cd,我们就说直线ab平行于直线cd.

我现在如果把这两条直线都斜过来,现在他们相互平行吗?为什么?

生活中的平行线

这些直线是相互平行的,生活中你还能找到这样的平行线吗?

看来生活中的平行线还真不少。有个小朋友叫淘气,他发现所有的窗户都太像了,没有一点儿创意。于是,他设计了这样的新型窗户。

你能接受淘气的设计吗?为什么?

刚才同学们找到的都是静止的,现在让我们看看运动中的平行线。

每周一我们都要举行升国旗仪式。国旗的上边从这里平移到了这里,他们是相互平行的。

再看看这副图。箭头从这里平移到这里。同学们,线段 hg一开始在这里,平移后到了h1g1,线段hg和线段h1g1平行吗?那你能从平移前后的箭头中,找出类似的相互平行的线段吗?

画平行线

教师演示三角尺平移法,

注意点:1、对 2、靠 3、移 4、画

学生画。

三、运用知识,解决问题

四、课堂总结,概括新知

学了这节课后,你对平行线有什么新的认识吗?

随着学习的不断深入,我们对平行的认识也会越来越深刻。

平行四边形教案 篇8

导学目标:

1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。

2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。能根据判别方法进行有关的应用。

3、在探索过程中发展学生的合理推理意识、主动探究的习惯。

4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

导学重点:平行四边形的判别方法。

导学难点:根据判别方法进行有关的应用

导学准备:多媒体课件

导学过程:

一、快速反应

1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________

2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________

3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?

结论:______________________________________

符号表示:

4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?

在图中,AC=BD=16, AB=CD=EF=15,

CE=DF=9。

图中有哪些互相平行的线段?

二、议一议

1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?

三、平行四边形的判别方法:

(1)两组对边分别平行的四边形是平行四边形。

(2)两组对边分别相等的四边形是平行四边形。

(3)一组对边平行且相等的。四边形是平行四边形。

(4)两条对角线互相平分的四边形是平行四边形。

四、练一练:

1.判断下列说法是否正确

(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )

(2)两组对角都相等的四边形是平行四边形 ( )

(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )

(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )

2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?

3.比一比:如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由。

五、师生共同小结,主要围绕下列几个问题:

(1)判定一个四边形是平行四边形的方法有哪几种?

(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

(3)平行四边形判定的应用

六、课后巩固:课本P107习题4.4第1题和第2题

七、课后反思:

一键复制全文保存为WORD