函数的图像【最新3篇】

教学目标下面是小编辛苦为大家带来的函数的图像【最新3篇】,在大家参照的同时,也可以分享一下给您最好的朋友。

函数的图象 篇1

函数的图象

教学目标

(一)知道函数图象的意义;

(二)能画出简单函数的图象,会列表、描点、连线;

(三)能从图象上由自变量的值求出对应的函数的近似值。

教学重点和难点

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

教学过程 设计

(一)复习

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).

5.请在坐标平面内画出A点。

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)

(二)新课

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。

这个函数关系中,y与x的函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

具体做法是

第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。

函数式y=2x+1

自变量x

-2

-1

0

1

2

函数值y

-3

-1

1

3

5

(这种用表格表示函数关系的方法叫做列表法)

第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点。也就是由表中给出的有序实数对,在直角坐标系中描出相应的点。

第三步     连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1的图象。图13-24

例1          在同一直角坐标系中画出下列函数式的图象:

(1)y=-3x;(2)y=-3x+2; (3)y=-3x-3

分析:按照列表、描点、连线三步操作。

解:

函数式(1)y=-3x

自变量x

-2

-1

0

1

2

函数y

6

3

0

-3

-6

函数(2)y=-3x+2

自变量x

-2

-1

0

1

2

函数y

8

5

2

-1

-4

函数(3)y=-3x-3

自变量x

-2

-1

0

1

2

函数y

3

0

-3

-6

-9

它们的图象分别是图13-25中的(1)(2)(3)。

例2     某化工厂1月到12月生产某种产品的统计资料如下:

X/月份

1

2

3

4

5

6

7

8

9

10

11

12

Y/产品吨数

2

3

3

4

5

6

6

6

5

4

5

7

(1)在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画邮对应的点。把12个点画在同一直角坐标系中。

(2)按照月份由小到大的顺序,把每两个点用线段连接起来。

(3)解读图象:从图说出几月到几月产量是上升的、下降的或不升不降的。

(4)如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?

解:(1),(2)见图13-26

(3)产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。

产量下降:8月到9月,9月到10月。

产量不升不降:2月到3月;6月到7月,7月到8月。

(4)过x轴上的4.5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4.5 ,所以4月15日的产量约为4.5吨。

(三)课堂练习

已知函数式y=-2x。用列表(x取-2,-1,2,1,2),描点,连线的程序,画出它的图象。

(四)小结

到现在,我们已经学过了表示函数关系的方法有三种:

1.解析式法——用数学式子表示函数的关系。

2.列表法——通过列表给出函数y与自变量x的对应关系。

3.图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系内描出对应的点,所有这些点的集合,叫做这个函数的图象。用图象来表示函数y与自变量x对应关系。

这三种表示函数的方法各有优缺点。

1.用解析法表示函数关系

优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。

缺点:在求对应值时,有时要做较复杂的计算。

2.用列表表示函数关系

优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。

缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。

3.用图象法表示函数关系

优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。

缺点:从自变量的值常常难以找到对应的函数的准确值。

函数的三种基本表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。

(五)作业

1.在图13-27中,不能表示函数关系的图形有

(A)(a),(b),(c)  (B)(b),(c),(d) (C)(b),(c),(e)   (D)(b),(d),(e)

2.函数y= 的图象是图13-28中的(  )

3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2).

(1)             以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;

(2)             列表、描点、连线画出此函数的图象

4.(1)画出函数y=- x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);

(2)判断下列各有序实数对是不是函数。Y=- x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相应坐标的点是否在你所出的函数图象上:

(-2,2 ),  (- ,2 ),    (-1,3), ( ,1 )

5.画出下列函数的图象:

(1)y=4x-1; (2)y=4x+1

6.图13-29是北京春季某一天的气温随时间变化的图象。根据图象回答,在这一天:

(1)8时,12时,20时的气温各是多少;

(2)最高气温与最低气温各是多少;

(3)什么时间气温最高,什么时间气温最低。

7.画出函断y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

8.画出函数y= 图象(先填下表,再描点,然后用平滑曲线顺次连结各点):

X

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

y

作业 的答案或提示

1.              选(C),因为对应于x的一个值的y值不是唯一的。

2.              选(D)当x<0时, =-x,所以y= = =-1,当x>0时, =x,所以y= = =1

3.

(1)y=x(6-x)其中0<x<6,(图13-30)。

(2)

X

0

1

2

3

4

5

6

y

0

5

8

9

8

5

0

4.

Y=- x+2

x

-4

-3

-2

-1

0

1

2

3

4

y

3

3

2

2

2

1

1

1

经过检验,点(- ,2 )及点( ,1 )在所画的函数图象上。

5.

Y=4x-1

X

-2

-1

0

1

2

y

-9

-5

-1

3

7

Y=4x+1

x

-2

-1

0

1

2

y

-7

-3

1

5

9

6.(1)8时约5℃,20时约10℃。(2)最高气温为12℃,最低气温为2℃。(3)14时气温最高,4时气温最低。

7.

Y=x2

X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

4

2.25

1

0.25

0

0.25

1

2.25

4

8.

Y=

X

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

y

-1

-

-

-2

-3

-6

6

3

2

1

课堂教学设计说明

1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。

2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。

3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。

4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。

5.作业 中的第1-3题,对训练函数图象很有帮助。

第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。

第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。

第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。

函数的图像 篇2

以下是初中数学优秀说课稿《一次函数的图像》,欢迎参考借鉴!

今天我说课的题目是《一次函数的图像》,所选用的教材为华师大版义务教育阶段初中数学实验教材第四册。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教学方法分析,教学过程分析,教学评价六个方面加以说明。

一。教材分析

1.教材的地位和作用

本节教材是初中数学 8年级(下)第18章第3节第二课时的内容,函数是数学中重要的基本概念之一,也是初中数学的重要内容之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。第18章,既是学生函数的入门,也是进一步学习的基础。

作为本节内容,一方面,这是在学习了《变量与函数》、《函数的图像》的基础上,对函数意义的进一步深入和拓展;另一方面,又为学习《一次函数的性质》等知识奠定了基础,是进一步研究现实世界中数量关系的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

2.教学重难点

根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:一次函数与正比例函数概念、图像的理解;难点确定为:k、b的取值与一次函数图像位置的关系。

二。学情分析

从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了《变量与函数》、《函数的图像》,对函数的意义已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于函数图像的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应注意发展学生数形结合的思想。

三。教学目标分析

新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感、态度、价值观目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时也是学生学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把这两者充分体现在过程与方法中。

1.知识与技能

理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象,掌握 k与b的取值对直线位置的影响。

2.过程与方法

经历一次函数的作图过程,探索某些一次函数图象的异同点;

3.情感态度与价值观

体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂。

四。教学方法分析

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的知道下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

五。教学过程分析

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(一)创设情境

前面我们学习了用描点法画函数的图象的方法,下面请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象。

(1)y=-1/2x ;(2)y=-1/2x+2; (3) y=3x;  (4) y=3x+2。

教学说明:

第一步、对于函数(1)应结合以前函数图像的作法详细讲解。特别注意学生在列表取值,平面直角坐标系的正方向、单位长度,描点的正确性等学生作图的易错点。

第二步、学生自主完成函数(2)的图像。

第三步、同学们观察并互相讨论,并回答:你所画出的图象是什么形状?

一次函数y=kx+b(k≠0)的图象是一条直线,这条直线通常又称为直线y=kx+b(k≠0).又因为两点可以确定一条直线,所以今后画一次函数图象时只要取两点,过两点画一条直线就可以了。

第四步、学生用两点法作出函数(3)(4)的图像。

观察上面四个函数的图象,发现它们都是直线。请同学举例对他们的发现作出验证。

设计意图:教学应从学生已有的知识体系出发,作函数图像是本节课深入研究一次函数y=kx+b(k≠0)的图象的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(二)探究归纳

再观察上面四个函数的图象,也就是k、b的取值与一次函数图像位置的关系:

(1) y=-1/2x+2是由直线y=-1/2x向上移动2个单位得到的;而直线y=3x+2是由直线y=3x分别向上移动2个单位得到的。

(2) y=-1/2x+2与y=3x+2的交点在同一点,是因为两条直线的b相同;即直线与y轴的交点纵坐标取决于b。

由此得出结论,两个一次函数,当k一样,b不一样时有共同点:直线平行,都是由直线y=kx(k≠0)向上或向下移动得到;

不同点:它们与y轴的交点不同。

而当两个一次函数,b一样,k不一样时,有共同点:它们与y轴交于同一点(0,b);不同点:直线不平行。

补充说明:由于上述函数只有b>0的情况,不能体现将正比例函数向下平移,因此我在教学中让学生自主完成了b<0时的图像以利于学生理解图像向下平移的情况。

设计意图:现代数学教学理论认为:教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳使学生有一个完整的知识形成过程。

(三)实践应用

1.完成课本例1

注意引导让学生讨论、交流,及时反馈知识在实际中的应用。

2.完成课后练习

设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,体现新课标提出的让更多的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

(四) 小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,应从学习的知识、方法、体验几个方面进行归纳,我设计了这么三个问题:

① 通过本节课的学习,你学会了哪些知识;

② 通过本节课的学习,你最大的体验是什么;

③ 通过本节课的学习,你掌握了哪些学习数学的方法?

(五)布置作业,提高升华

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

六。教学评价

本课教学注意挖掘教材,体现学生的主体地位;同时以问题为载体,探究为主线,有意识地留给学生适度的思维空间,从不同视角上展示不同层次学生的学习水平,使传授知识与培养能力融为一体 。

函数的图像 篇3

4.8 正弦函数、余弦函数的图像和性质(第二课时)

(一)教学具准备

直尺,投影仪。

(二)教学目标 

1.掌握 , 的定义域、值域、最值、单调区间。

2.会求含有 、 的三角式的定义域。

(三)教学过程 

1.设置情境

研究函数就是要讨论一些性质, , 是函数,我们当然也要探讨它的一些属性。本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质。

2.探索研究

师:同学们回想一下,研究一个函数常要研究它的哪些性质?

生:定义域、值域,单调性、奇偶性、等等。

师:很好,今天我们就来探索 , 两条最基本的性质——定义域、值域。(板书课题正、余弦函数的定义域、值域。)

师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像。

师:请同学思考以下几个问题:

(1)正弦、余弦函数的定义域是什么?

(2)正弦、余弦函数的值域是什么?

(3)他们最值情况如何?

(4)他们的正负值区间如何分?

(5) 的解集如何?

师生一起归纳得出:

(1)正弦函数、余弦函数的定义域都是 .

(2)正弦函数、余弦函数的值域都是 即 , ,称为正弦函数、余弦函数的有界性。

(3)取最大值、最小值情况:

正弦函数 ,当 时,( )函数值 取最大值1,当 时,( )函数值 取最小值-1.

余弦函数 ,当 ,( )时,函数值 取最大值1,当 ,( )时,函数值 取最小值-1.

(4)正负值区间:

( )

(5)零点: ( )

( )

3.例题分析

【例1】求下列函数的定义域、值域:

(1) ; (2) ; (3) .

解:(1) ,

(2)由 ( )

又∵ ,∴

∴定义域为 ( ),值域为 .

(3)由 ( ),又由

∴定义域为 ( ),值域为 .

指出:求值域应注意用到 或 有界性的条件。

【例2】求下列函数的最大值,并求出最大值时 的集合:

(1) , ; (2) , ;

(3) (4) .

解:(1)当 ,即 ( )时, 取得最大值

∴函数的最大值为2,取最大值时 的集合为 .

(2)当 时,即 ( )时, 取得最大值 .

∴函数的最大值为1,取最大值时 的集合为 .

(3)若 , ,此时函数为常数函数。

若 时, ∴ 时,即 ( )时,函数取最大值 ,

∴ 时函数的最大值为 ,取最大值时 的集合为 .

(4)若 ,则当 时,函数取得最大值 .

若 ,则 ,此时函数为常数函数。

若 ,当 时,函数取得最大值 .

∴当 时,函数取得最大值 ,取得最大值时 的集合为 ;当 时,函数取得最大值 ,取得最大值时 的集合为 ,当 时,函数无最大值。

指出:对于含参数的最大值或最小值问题,要对 或 的系数进行讨论。

思考:此例若改为求最小值,结果如何?

【例3】要使下列各式有意义应满足什么条件?

(1) ; (2) .

解:(1)由 ,

∴当 时,式子有意义。

(2)由 ,即

∴当 时,式子有意义。

4.演练反馈(投影)

(1)函数 , 的简图是(      )

(2)函数 的最大值和最小值分别为(     )

A.2,-2       B.4,0        C.2,0         D.4,-4

(3)函数 的最小值是(     )

A.          B.-2          C.           D.

(4)如果 与 同时有意义,则 的取值范围应为(     )

A.       B.       C.       D. 或

(5) 与 都是增函数的区间是(      )

A. ,                B. ,

C. ,           D. ,

(6)函数 的定义域________,值域________, 时 的集合为_________.

参考答案:1.B   2.B   3.A  4.C  5.D

6. ; ;

5.总结提炼

(1) , 的定义域均为 .

(2) 、 的值域都是

(3)有界性:

(4)最大值或最小值都存在,且取得极值的 集合为无限集。

(5)正负敬意及零点,从图上一目了然。

(6)单调区间也可以从图上看出。

(五)板书设计 

1.定义域

2.值域

3.最值

4.正负区间

5.零点

例1

例2

例3

课堂练习

课后思考题:求函数 的最大值和最小值及取最值时的 集合

提示:

一键复制全文保存为WORD