篇一:“概率论与数理统计(二)”学习方法这次帅气的小编为您整理了怎样学好概率论-概率论的学习方法介绍最新4篇,在大家参照的同时,也可以分享一下给您最好的朋友。
答:考试要注意,只有数学1和数学3的同学要考数理统计,按照以前考试数学1一般来说考三分之一分数的题,数学3是四分之一,但是仅仅是一个很例外的情况,20xx年数学1考了16分的数理统计,但是今年没有考这部分,今年考试这个地方的命题是有一点有失偏颇,我个人的看法为了避免这样的情况,所以这个地方一定要看,一般要考8分左右的题是比较合适的,到底考什么,我可以把这个范围缩的比较小,考这么几种题型,第一个是求统计量的数字特征或者是统计量的分布,统计量大家知道就是样本的函数,样本就是X1X2-Xn,就是期望、方差、系方差,相关系数等等,求统计量的数字特征。第二个题型,统计量既然是随机变量,当然可以求统计量的分布,2001年数学3是考了,2002年数学3考了,所以这个地方也是重要的题型。其次第三种题型是参数估计,你要会求。要考你背两到三个区间估计的公式就可以了,所以为什么这个地方考的次数最多,每一种方法你都要会做。第四种题型就是对估计量的好坏进行评价,估计是无偏是有效的还是抑制的。20xx年就考了一个大题。另外第五种题型就是假设间接这个地方,这么年以来只考过两次,而且从99年以来练习五年这一章是没有考,但是也正音连续五年没有考,我个人估测2004年在这个上面考一个小题的可能是非常大的,我想同学们这部分花一点点时间看一看它,可能 考一个小题,考一个什么题,就是把统计量写出来,你会不会把分布写出来,以填空的方式。另外一种考法,它的只对什么进行检验,对什么参数进行检验,你把统计参数写出来。第三种方法,设计一个问题,把架设检验的十个步骤做出来,第一个步骤是提出架设,第二步写出检验统计量。这个部分也不会出一个大题,应该是以小题的形式出现。
答:概率这门学科与别的学科是不太一样的,首先我建议这位同学你可以看一下教育部考试中心一本杂志,专门出了一个针对研究生考试的书,这个里面请我写了一篇文章,里面我举很多例子,你看了之后有一个详细复习方法。概率这门学科与概率统计、微积分是不一样的,它要求对基本概念、基本性质的理解比较强,有个同学跟我说高等数学不存在把题看不懂的问题,但是概率统计的题尤其文字叙述的时候看不懂题,从这个意义上来说同学平常复习时候,只要针对每一个基本概念,要把它准确的理解,概念要理解准确,通过例子理解概念,通过实际物体理解概念。例如:比如我们一个盒子一共有十件产品,其中三件次品,七件正品,我们做一个实验,每次只取一件产品,取之后不再放回去,现在我提两个问题:一个是第三次取的次品是什么事件,这个事件就是积事件,第一次没有取到次品,第二次没有取到次品,第三次是取到次品,求这么一个事件的概率,但是换一个问题,我说你求前面两次没有取到次品情况下,第三次取到次品的概率,这个就不是积事件了,我第二个问题是知道了前面两次没有取到次品,这个信息已经知道了,然后问你第三次取到次品概率是多少,这是条件概率,这个信息已经知道了,另外一个事件发生的概率,这叫条件概率,这是容易混淆的。还有绝对概率,拿我们刚才举的例子来讲,如果我让你求第三次取到次品是什么概率,那是绝对事件的概率,这和前面两个又不一样。我举这个例子提醒考生复习时候把这些基本概念搞清楚了,把公式把握了,这个就比较容易了。跟微积分比较起来这里没有什么公式,公式很少。所以我们把基本概念弄清楚以后,计算的技巧比微积分少得多,所以有同学跟我说,他说概率统计这门课程要么就考高分,要么考低分,考中间分数的人很少,这就说明了这种课程的特点。
答:这个可以看作我们概率一个基础,我不知道这个网友是考数学几,随机变量分布这是一大块内容,基本每都年考一点,还有一个就是数理特征和数理统计基本考一个大题,概率和数理统计这部分如果从复习角度来看我们首先要理解概念,我认为这里面有三个典型途径:第一古典概率,一个概率的公式的推算,第二个途径就是利用我们的分布信息来求概率,我们涉及到一维的也可以是二维的,即可以是离散型的也可以是连续型的,都有求概率的方法,我们讨论概率统计里的问题,比如分布函数问题,本身就是求概率,你只要知道求概率统计三个途径,所以我讨论分布函数,由分布函数可以讨论概率分布函数,源头是分布函数,分布函数基础是求概率,通过这个角度把握我认为概率统计发现不是你想象的那么复杂了。这里面重点的是二两者,第一种古典概率考的是排列组合,这个是初中内容,稍微难一点古典概率的题,同学没有过多关心,不会从这个角度考的,而是根据我刚才的分析。所以把握这种思路以后,实际上概率统计知识应该把线性代数,特别比高等数学更好拿分。另外稍微应该注意一下概率统计里面随机事件和随机变量之间的转换关系。我们可以通过随机事件引进随机变量,反过来也可以,所以大家复习时候。讨论随机事件之间关系问题也可以借用随机变量之间关系分析,这是概率统计方面大家应该注意几个比较典型的知识点。
这部分书上只要求一半,第七章的基本概念和第八章的参数估计,第九章的检验假设(和参数估计同等级的,也是一种推测的方法)和第十章两种分析(貌似是讲怎样处理数据的,我也没仔细看,所以就不和前几章一样装做很懂的样子,我发现我好会装啊,其实我前几章也不懂,哈哈)不要求
相比于概率论,数理统计要求的内容比较少,只要掌握基本概念和参数估计就好了。先举个例子。
譬如我想知道在周一到周五哪天晚上去图书馆才能尽可能遇见你,所以首先呢,我在本学期前五周先安排了我的一个兄弟蹲守侧门,我呢蹲守正门,开始记录你来图书馆是星期几晚上(也就是抽样),然后呢我就开始分析这些数据,最后我可以推测在接下来的十几周,我应该在周四晚上去图书馆才能尽可能遇见你。诶,这就是数理统计要干的事。
下面是正文:
第七章 基本概念
这章有3个内容。第一个就是总体样本观测值的定义,第二是统计量,第三是分位数。
【1】其实高中也学过,不过大学只是把它定量化了。其实这章有些人看不懂,主要是看大写X,Xi和小写xi看晕了。所以我们要明确总体X,样本X1,X2,Xn,而观测值是x1,x2,xn。从总体中抽出样本的过程就是抽样,也就是上文的蹲点。而观测值呢就是我蹲点后的记录。(这里要明确的是,样本也是个随机变量,因为我蹲点了,你来不来肯定不知道啊,只有等我观测了一晚上记录说“今晚你没来”,这样我才知道,而这就是观测值)
PS:大写的X和中文的“量”(譬如估计量)都是指随机变量是不确定的。小写的x和“值”(譬如估计值)都是数值,是个数。
【2】明确了定义,我们就来看下怎样去高校地表示和利用这些数据,也就是统计量。常见的统计量有样本均值,样本方差,样本K阶矩和最大最小次序统计量。(要注意的是,和概率论不同的是,这里是样本的统计量)
这些比较简单,难得是统计量的分布。(三大分布x2分布,t分布,F分布)主要掌握他们的定义,概率密度的图像,性质(书上很多东西都不要求的,只要记住定义图像和性质就行,譬如开方分布的期望是自由度之类的)。尤其是图形要记住,之后的区间估计会用到。这章中的考题也无非就是统计量的分布和统计量的数值特征。
由于现实中最常见的分布是正态分布,所以之后书本上讨论了正态总体的抽样分布,这里很枯燥,一大推不认娘的公式,有人肯定看不大懂,没关系,学到区间估计就懂了(由于内容重复,我在下文区间估计时一起讲)。
【3】分位数,这个比较直观实用,附录很多表就是这个。我们的教课书上采用的左侧分位数,就是阴影在左边的。具体的定义比较简单,记住横坐标和阴影的对应关系就好了。 总结下这章的重点,1)三大分布的定义和性质2)正态总体三个抽样分布(下文区间估计一起讲)3)三个图像在区间估计时的运用,譬如求下文1-α的置信区间等。然后这章就没了。
第八章 参数估计
参数估计就是上文我分析推测你最可能哪天晚上去图书馆自习的方法之一,还一个方法就是假设检验。整章就两个内容,点估计和区间估计。