在学习、工作生活中,大家都不可避免地会接触到论文吧,论文是学术界进行成果交流的工具。怎么写论文才能避免踩雷呢?下面是小编辛苦为大家带来的六年级数学小论文(精彩7篇),希望大家可以喜欢并分享出去。
在遥远的布兰克大森林里,住着许许多多可爱的小动物,这一天,小猪和小猫约好要一齐去河对面的君子公园游玩。
“叮铃铃,叮铃铃”,小猪将手慢悠悠的伸向闹钟,“啪”刺耳的声音被关掉了。小猪看了一眼手表:“不好!9点了,还有二十分钟就到约定时间了!”他慌忙地跑下了床,拉开衣柜,这下小猪可犯愁了:有4件上衣,3条裤子,5双鞋子,一共有几种穿法呢?他想了想,不禁说道:“用4×3×5,一共有60种穿法。”小猪犹豫了半天,穿了一身休闲装。
“呼呼”小猪喘着气看向了湖边的一块木牌子:因木桥已坏,请渡河过岸。“什么?渡河过岸,难不成要游过去?我可是个旱鸭子!”“别担心!那里有船!”小猫指了指熊大叔旁边说道:“你什么时候来的?一点声音也没有!”小猫笑了笑,拉起小猪的手向熊大叔走去。
“我要租一辆船。”小猫说。“这船是不能轻易租出去的,要先回答我的问题。”熊大叔摸了摸小猪的头说道。小猫和小猪异口同声地说:“什么题?”熊大叔说:“有一些小动物去划船,他们算了一下,此刻有若干条船,如果增加一条船,正好每条坐6人,如果减少一条船,正好每条坐9人,问一共有几个小动物?”
小猪拿了1条木棍,迅速的在地上写出了关系式:(船+1)×6=人,(船-1)×9=人。小猫看了看,灵机一动,说道:“如果设有×条船,动物数为(×+1)×6,那便能够列式为:(x-1)×9=(x+1)×6。能够求出×=5,再用(5+1)×6=36只,所以就有36只小动物。”
“不错!解得很好,此刻能够渡河了!”熊大叔对他们竖起了大拇指。
生活中,数学无处不在。建高楼要画几何图,发射火箭要经过无数的计算。
我们一般加减乘除都是由0~9十个数字构成的十进制的算是组成的,而电脑里却用了二进制。
我一向都想不明白,直到我做了这道题目:小明有511块糖,分别放在9个盒子里。你只要告诉他糖的块数,(不多于511),他就可将几个盒子里的糖全部拿出,凑成你要的块数,这几个盒子里各有多少块糖
我有些丈二和尚摸不着头脑,怎样也想不出来。我只好一个一个排,排了5个后,我发现是一个很有规律的数列:1.2.4.8.16.都是这个数乘2得到下一个数的。我照着排下去:1.2.4.8.16.32.64.128.256,刚好为511,原先电脑里面有二进制是因为能够算出所有数呀!
我有看到了一种问题-----“牛吃草”。一牧场上的青草匀速的生长,可供27头牛吃6天,工23头牛吃9天,18头牛吃了6天后增加了12头牛,还要几天吃完牛吃草有原有量和增长量,一部分牛吃原先就有的草,一部分牛吃长出来的草,吃增长量的牛无论什么时候都有的吃,而吃原有量的牛吃完了就没有了,所以应先求原有量和增长量,27×=162(份),(将牛一天吃的草视为一份),23×9=207(份),207-162)÷(9-6)=15(份),增长量为15份,162-6×15=72(份),原有量为72份,18头牛吃6天,共吃72-(18-15)×6=54(份)草,54÷(3+12)=3.6(天),答:还要3.6天吃完。
书上也是能够获得知识的。书的页码也有学问。如:甲。乙两册书用了8642个数码,且甲册比乙册多20页,甲书有多少页首先要明白1~页要1×9=9(个)数码,10~9需要2×90=180(个)数码,100~999需要2700个数码,(2700+180+9)×28642个,所以甲乙书都印到了四位数。20页有20×4=80(个)数码,甲书有(86742+80)÷2=4361(个)数码,4361-(9+180+270)=1472(个)数码,1472÷4=368(页),999+368=1367(页),答:甲书有1367页。
生活中,数学真是无处不在……
数学的知识海洋是无穷尽的,学习数学的过程也韵味无穷。今日,一道趣味的数学题引起了我的注意,于是,我叫妈妈来一齐思考这道题。
题目如下:某区举行小学生春季运动会,其中某校参加的人数占运动员总人数的十五分之一;若这个学校再去10名运动员,则该校人数占运动员总人数的二十三分之二。问这次运动会共有运动员多少人?这个学校有多少人参加运动会?
妈妈看到这道题后,二话不说,立马用方程来解。设原先共有运动员×人参加,那么现参赛总人数为(×+10),根据“原先参赛总人数×115+10=此刻参赛总人数×223”的关系【WWW.BAIHUAWEN.】式得出×=450,那么最终的答案就是:这次运动会共有460人参加,这个学校有40人参加。
我承认,在解方程的熟练程度方面,我还不如妈妈;可是,难道这道题就只能用解方程这一种方法来求解吗?数学教师在课堂上说过:掌握了比例法,能够使问题简单化,甚至能够把六年级的数学题变为二年级的那么简单!这道题目中有变量,也有不变量。哈哈,这时候我的脑海中浮现出“以不变量或者中间量做单位1”而用比例法求解。对于这道题,不变量是其他学校的参赛人数。所以,用1-115=1415算出原先这个学校和其他学校的人数比例是1:14。然而这个学校增加10人后,那总人数也就增加10人,所以用1-223=2123算出此刻这个学校和其他学校的人数比例是2:21。列出算式如下:
(原)某校:其他=1:14=3:42
(现)某校:其他=2:21=4:42
因为其他学校参赛人数不变,这样就能够算出这个学校增加10人是增加了4-3=1份,那么,比的单位就是10÷1=10人。用4×10=40就算出这个学校此刻的参赛人数;(4+42)×10=460算出这次运动会参赛的总人数。
一道题就这样被迎刃而解了。看到我不列方程直接算出答案,妈妈先是有些惊讶,继而拍拍自我脑门,连声说着:“我怎样没想到呢?”之后,当我说出:“数学王教师说了,如果看到应用题只明白列方程的话,是没有前途的”这句话后,妈妈来了句:“太伤自尊了!”就假装不理我了。
经过这道趣味的数学题,告诉我们一个道理:遇到难题不要怕,进取思考各个数之间的关系,进而找到解题的钥匙,这样,任何题都能被解决。
一天,我和妈妈上街去,看见一个小摊前围满了小孩。好奇的我赶紧走过去,原先摊主设了个可得奖品的游戏。一尺见方的硬纸板上用黑笔画了个“”并按顺时针方向依次标上1.2.3.……12。1.3.5.等奇数格上放了手表等较贵重的物品。2.4.6.等偶数格上是些不值钱的小贴纸,纸盒正中有枚小指针。参加游戏的小朋友轻轻拨动小指针,它就会转起来,当它停下来时,看停在几号格,然后你再按指针所指的数字往后走相应的格数,这时走到的格子里的物品就归你了。每玩一次只要付一元钱给摊主即可。
奇怪,怎样玩的人都只得到小贴纸呢妈妈让我好好想想这中间有什么奥妙。
我想,小指针可能停在1.3.等奇数上,也有可能停在2.4.等偶数上。但问题的关键是还要往后走与它相同的格数。奇数+奇数=偶数,偶数+偶数=偶数。也就是说,一个数加上它本身,结果肯定是偶数。所以不管指针停在奇数还是偶数上,最终得到的偶数的可能是百分之百,而得到奇数的可能性是0。
举个例子来说,假如指针停在奇数“5”号格。这时还应当往后走5格,6.7.……10,好,停在“10”号格上了,假如指针停在偶数“6”号格,再往后走6格,7.8.……12,就停在“12”号格上了。
所以,不管指针停在哪里,往后再走同样的格数后,所得到的都是偶数,所以小朋友都只得到最便宜的小贴纸,而得到贵重物品的可能性是0。这个摊主肯定能赚钱。
其实,生活中的一些小把戏只是运用了某些知识,只要你肯动脑,勤思考,多分析,就能发现其中的奥妙,你就不会轻易上当了,因为天下没有免费的午餐。
妈妈说,外公家养的两只母狗“格格”和“花花”最近一前一后生了两只小狗,于是我缠着妈妈带我去看。
星期天,我们来到了外公家,看到了这2只小狗,它们都十分有特点。一只长得胖嘟嘟的,象个小肉球,灰色的皮毛在太阳光的照耀下闪闪发光;另一只则长得比较“秀气”,浑身雪白,象穿了一件洁白的外衣,依偎在“狗”妈妈的怀里,好可爱哦!根据出生的时间和颜色,外公分别给它们取名为老大灰灰,老二白白。
一到“狗屋”旁,我就被调皮可爱的小狗们吸引住了,全然不觉外公已经来到我的身边。外公说:“媛媛,你快要上四年级了,今日外公考你个问题,看你能否答出来”“没问题!”我自信地回答。外公指着小狗说:“这2只小狗出生的日期十分趣味,老大和老二出生在相邻月份的1号,这两个1号分别是星期三和星期四,你明白是哪两个月的1号吗”
咋一听,这个问题挺难的,但不服输的我还是进取动起脑来,我不由联系起三年级时学过的年月日知识:由相邻两个月的1号是星期几,如果只差一天,说明第一个月的天数除以7余1天,哪个月的天数是这样的呢哦,有了,29除以7余1天,一年中仅有二月份有可能出现29天,由此能够断定老大、老二分别出生在二月、三月的1号。
我把想法告诉了外公,外公高兴地夸我真聪明,那2只可爱的小狗好象也为我猜出了它们的生日而欢快地跳来跳去呢!
孙一、王二、张三、李四四位水手乘坐的小船不幸被大风吹到了一座荒岛边,可整个岛上除了椰子树就是灌木林与野草。为了生存他们只好把所有的椰子都采摘下来,堆放在一齐。天黑了,大家又累又困来不及分摊椰子就躺下睡着了。
夜里1点钟,孙一醒来,肚子饿得咕咕直叫。他看伙伴们睡得正香,就轻手轻脚地爬起来,走到椰子旁,把椰子分成相等的4份,见还多出1个,就把那个椰子吃了,然后把自我的一份藏起来后躺下继续睡觉。夜里2点钟,王二醒了过来。他见伙伴们呼呼大睡,也轻手轻脚地爬起来,走到椰子旁,把椰子分成相等的4份,见还多了1个,就把多出的那个椰子吃了,然后把自我的一份藏好后躺下继续睡觉。
夜里3点钟,张三又醒了。他看伙伴们睡得很香,就轻手轻脚地爬起来,走到椰子旁,把椰子分成相等的4份,见还多了1个,就把那个椰子吃了,然后把自我的一份藏好后躺下继续睡觉。夜里4点钟,李四又醒了。四周静悄悄的,伙伴们都在睡梦中。李四就轻手轻脚地爬起来,走到椰子旁,把椰子平均分成相等的4份,见还多了1个,就把那个椰子吃了,然后把自我的一份藏起来躺下继续睡觉。
天亮了,大家都装着什么也没发生,吵着说:“饿死了,快分椰子吃。”椰子正好可分成4份,每份60个。分完后大家低头吃了起来。
半小时后,李四觉得良心有些不安,心想:“如果我不在夜里4点吃了一个椰子并藏起一份,大家就能够分到更多的椰子了。”于是他红着脸向大家坦白了所作所为,承认了错误。大家就算出李四4点起来前的椰子数目应当为((60×4)3)×4+1=321(个)。张三听后脸上发烫,也交待了他的所作所为。大家就又算出张三3点起来前的椰子数目应当为(3213)×4+1=429(个)。之后王二觉得心里有愧,也低着头交待了他的所作所为。大家就又算出王二2点起来前的椰子数目应当为
(4293)×4+1=573(个)。
伙伴们都承认了自我的错误后,孙一也坐不住了,如实交待了他在1点的所作所为。大家最终明白昨日采摘的椰子总共应有(5733)×4+1=765(个)。
经过这件事,四位水手认识到:仅有大家坦诚相待,才能同舟共济、共渡难关。
大千世界,无奇不有,在我们数学王国里也有许多趣味的事情。在我们五年级下册数学书里,就有这么一道思考题:一根蜡烛第一次烧掉全长的15,第二次烧掉剩下的一半。这根蜡烛还剩下全长的几分之几大部分同学看到这个题目,肯定觉得脑子里好乱,其实不然。你能够把题目再读一遍,拿出草稿纸,画一画。一根蜡烛烧掉全长的15,那么还剩下全长的45。第二次烧掉剩下的一半,也就是45的一半,算一算,哦!是25!求剩下的就是用全长的单位“1”减去两次烧掉的占全长的几分之几,也能够说剩下的就是第二次烧掉的一半。解得:1-15-25=45-25=25。答:这根蜡烛还剩下全长的25。即便题目再难,只要你静下心来,理清条理,就必须会被你解决!
一次,我在课外作业上,做到一道题目,立马难住了我。一个最简分数的分子加上一个数,这个分数就等于23;如果它的分子减去同一个数,这个分数就等于512。求原先的最简分数是多少哎呀!这怎样做我开始用死办法做,一个一个找。之后实在找不出来,才慢慢动脑筋做。两个新分数在约分,分母相同,其实能够将这两个数通分化成分母是两个原分数的最小公倍数2倍的同分母分数,即23=1624,512=1024。将两个新分数的分子之差除以2就能够得到分子加上和减去的那个数,即16-10=6,6÷2=3,故3就是分子加上和减去的数。这么一做,简单了许多!
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很简便,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,仅有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。仅有在生活中发现数学,感受数学,才能让自我的视野更加开阔!