为提高教学水平以及教学质量,激发学生对数学的次拿过去,从而提高数学成绩,制定好教学计划是少不了的。下面是小编辛苦为大家带来的高一数学教学计划精彩6篇,希望能够帮助到大家。
一。学情分析
20__年秋季起,湖南省高中新课程实验工作全面启动,我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。
二。教材分析
本教材有下列几个特点:
1、更加注重强调数学知识的实际背景和应用,使教材具有很强的亲和力,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生看个究竟的冲动,使学生兴趣盎然地投入学习。
2、 以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到观察思考探索以及用问号性图标呈现的边空等栏目,利用这些栏目,在知识形过过程的关键点上,在运用数学思想方法产生解决问题策略的关节点上,在数学知识之间联系的联结点上,在数学问题变式的发散点上,在学生思维的最近发展区内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。
3、 信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。
4、关注学生数学发展的不同需求,为不同学生提供不同的发展空间, 促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置观察与猜想、阅读与思考、探究与发现等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。
5、 新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。
三。 教学任务与目的
1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。通过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。
2、 了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=a_ 与对数函数y=loga _互为反函数(a 0, a1)。通过实例,了解幂函数的概念;结合函数y=_, y=_2, y=_3, y=1/_, y=_1/2 的图象,了解它们的变化情况。
3、 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。
4、 利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
5以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题。
6、 在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
四。教学措施和活动
1、 加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。
2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念。
3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。
4、与学生多沟通、多交流,真正成为学生的良师益友。
5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。
五。教学时间大致安排
集合与函数概念 13
基本初等函数 15
函数的应用 8
空间几何体 8
点、直线、平面的位置关系 10
直线与方程 9
圆与方程 9
一、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到门道,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础。一些自我感觉良好的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的水平,好高鹜远,重量轻质 ,陷入题海。到正规作业或考试中不是演算出错就是中途卡壳 。
此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高。
二、教学策略思考与实践
针对我校高一学生的具体情况,我在高一数学新教材教学实践与探究中,贯彻因人施教,因材施教原则。以学法指导为突破口;着重在读、讲、练、辅、作业等方面下功夫,取得一定效果。
加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。学然后知不足,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由懂到会。
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由会到熟。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由熟到活。
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由活到悟。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。
1、读。俗话说不读不愤,不愤不悱。首先要读好概念。读概念要咬文嚼字,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概念,是不加定义的。它从常见的我校高一年级学生 、我家的家用电器、太平洋、大西洋、印度洋、北冰洋及自然数等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特征是由一组公理来界定的。确定性、无序性、互异性常常是集合的代名词。
再如象限角的概念,要向学生解释清楚,角的始边与_轴的非负半轴重合和与_轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和Sn.有q1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意真数大于0的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说议一议知是非,争一争明道理。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元素是没有顺序的;同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。
2、讲。外国有一位教育家曾经说过:教师的作用在于将冰冷的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天冲刺一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、形成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生已经掌握五套诱导公式,可以将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750度,150度等)能不能不通过查表而求出精确值呢?这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让学生从感性认识上升到理性认识。鼓励学生应积极、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。
例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易接受。其次讲要注重突出数学思想方法的教学,注重学生数学能力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。可以引导学生对照等差数列的相应的内容,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。
3、练。数学是以问题为中心。学生怎么应用所学知识和方法去分析问题和解决问题,必须进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行高、深、难练习。鉴于目前我校高一的生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生通过认真思考可以完成。即让学生跳一跳可以摸得着。一定要让学生在练习中强化知识、应用方法,在练习中分步达到教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改造,便可以变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师可以在上面做很多文章。其次要讲练结合。学生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。特别是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意见,哪怕走点弯路 ,吃点苦头另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间,培养学生思维的多面性和深刻性。
例如,高一(下)P26例5求证 。可以从一边证到另一边,也可以作差、作商比较,还可以用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还可以利用换元法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一直角坐标系中作出它们的图像。求两图在_轴上方的交点的横坐标为2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导学生学会建立数学模型,并应用所学知识,研究此数学模型。
4、作业。鉴于学生现有的知识、能力水平差异较大,为了使每一位学生都能在自己的最近发展区更好地学习数学,得到最好的发展,制定分层次作业。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习情况自主选择,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根据学生实际学习情况,随时进行调整。
5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学能力、独立钻研精神和集体协作能力。具体做法:成立由三至六名学生组成的讨论组,教师负责为他们介绍高考、竞赛参考书,并定期提供学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人知道自己存在问题(越具体越好),老师对辅导学生情况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问题的能力。
本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教学目标、
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备、高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃、这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高、如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等、客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习、许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权、表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法、而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背、也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
【内容】建立函数模型刻画现实问题
【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发现或建立数学模型,并能体会数学在实际问题中的应用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。在一个具体问题的解决过程中,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成。另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正理解函数模型的应用和在应用过程中函数模型的建立与解决问题的过程,而从简单、典型、学生熟悉的函数模型中挖掘、提炼出来的思想和方法,更容易被学生接受。同时,应尽量让学生在简单的实例中学习并感受函数模型的选择与建立。因为建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和计算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析过程来选择适当的函数模型和函数模型的构建过程。在这个过程中,要使学生着重体会的是模型的'建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。
【教学目标】
(1)体现建立函数模型刻画现实问题的基本过程。
(2)了解函数模型的广泛应用
(3)通过学生进行操作和探究提高学生发现问题、分析问题、解决实际问题的能力
(4)提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度
【重点】了解并建立函数模型刻画现实问题的基本过程,了解函数模型的广泛应用
【难点】建立函数模型刻画现实问题中数据的处理
【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本过程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究过程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本过程中让学生亲身体验函数应用的广泛性,同时提高学生探究学习新知识的兴趣,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)
【学生学习中预期的问题及解决方案预设】
①描点的规范性;②实际操作的速度;③解析式的计算速度④计算结束后不进行检验
针对上述可能出现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用计算器利用小组讨论来进行多人合作以期提高相应计算速度,在解析式得出后引导学生得出的标准应该是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行筛选从而引出检验。
一、指导思想
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、高一上册数学教学教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有如下特点:
1、亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情、
2、问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神、
3、科学性与思想性:通过不同数学内容的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神、
4、时代性与应用性:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识、
三、高一上册数学教学教法分析:
1、选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的、
2、通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式、
3、在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯、
四、学情分析
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着、他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长、面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望、我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡、从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法、
五、高一上册数学教学教学措施:
1、激发学生的学习兴趣、由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力和解决实际问题的能力,提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、重视数学应用意识及应用能力的培养。
本学期担任高一_1、_2两班的数学教学工作,两班学生共有__人,初中的基础参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、教学目标。
(一)情意目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验"发现--挫折--矛盾--顿悟--新的发现"这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力,工作计划《高一数学上学期教学工作计划》。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的渗透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。
(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过不等式、函数的引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
(三)知识目标
1、集合、简易逻辑
(1)理解集合、子集、补订、交集、交集的概念。了解空集和全集的意义。了解属于、包含、相等关系的意义。掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
(2)理解逻辑联结词"或"、"且"、"非"的含义。理解四种命题及其相互关系。掌握充分条件、必要条件及充要条件的意义。
(3)掌握一元二次不等式、绝对值不等式的解法。
2、函数
(1)了解映射的概念,理解函数的概念。
(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。
(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质。掌握指数函数的概念、图像和性质。
(5)理解对数的概念,掌握对数的运算性质。掌握对数函数的概念、图像和性质。
(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
3、数列
(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
三、教学重点
1、集合、子集、补集、交集、并集。一元二次不等式的解法
四种命题。充分条件和必要条件。
2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。
3、等差数列及其通项公式。等差数列前n项和公式。
等比数列及其通项公式。等比数列前n项和公式。
四、教学难点
1、四种命题。充分条件和必要条件
2、反函数、指数函数、对数函数
3、等差、等比数列的性质
五、工作措施。
1、抓好课堂教学,提高教学效益。
课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。
(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。
(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过"知识的产生,发展",逐步形成知识体系;通过"知识质疑、展活"迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
2、加强课外辅导,提高竞争能力。
课外辅导是课堂的有力补充,是提高数学成绩的有力手段。
(1)加强数学数学竞赛的指导,提高学习兴趣。
(2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。
(2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。
3、搞好单元考试、阶段性考试的分析。
学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。
六、目标承诺
1、及格率不低于98%。
2、人平比年级平均高15分以上。