北师大初中数学知识点

知识真是一件很奇妙的东西。你只是你只是浅尝辄止,那么只会觉得枯燥乏味,像对待任务似的应付学习。下面小编给大家分享一些北师大初中数学知识点,希望对大家有所帮助。

北师大初中数学知识点1

丰富的图形世界

1.柱体:圆柱

2.锥体:圆锥

3. 球体:由球面围成的(球面是曲面)

4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。几何的表面有平面和曲面;

②面与面相交得到线;

③线与线相交得到点。

5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。

6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。

7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……

9. 长方体和正方体都是四棱柱。

10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

12. 设一个多边形的边数为n(n≥3,且n为整数),从一个顶点出发的对角线有(n-3)条;可以把n边形成(n-2)个三角形;这个n边形共有条对角线。

◎13. 圆上两点之间的部分叫做弧,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

15. 凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。

北师大初中数学知识点2

有理数及其运算

数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)

如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)

在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。

绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。

正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;

互为相反数的两数(除0外)的绝对值相等;

任何数的绝对值总是非负数,即|a|≥0

比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:

①先求出两个数负数的绝对值;

②比较两个绝对值的大小;

③根据“两个负数,绝对值大的反而小”做出正确的判断。

绝对值的性质:

①对任何有理数a,都有|a|≥0

②若|a|=0,则|a|=0,反之亦然

③若|a|=b,则a=±b

④对任何有理数a,都有|a|=|-a|

有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

加法的交换律、结合律在有理数运算中同样适用。

灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;

②符号相同的数,可以先相加;

③分母相同的数,可以先相加;

④几个数相加能得到整数,可以先相加。

有理数减法法则:减去一个数,等于加上这个数的相反数。

有理数减法运算时注意两“变”:①改变运算符号;

②改变减数的性质符号(变为相反数)

有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。

有理数的加减法混合运算的步骤:

①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;

②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)

有理数乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 …等)

乘法的交换律、结合律、分配律在有理数运算中同样适用。

有理数乘法运算步骤:①先确定积的符号;

②求出各因数的绝对值的积。

乘积为1的两个有理数互为倒数。注意:

①零没有倒数

②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。

③正数的倒数是正数,负数的倒数是负数。

有理数除法法则:①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②0除以任何非0的数都得0。0不可作为除数,否则无意义。

有理数的乘方

注意:①一个数可以看作是本身的一次方,如5=51;

②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

乘方的运算性质:

①正数的任何次幂都是正数;

②负数的奇次幂是负数,负数的偶次幂是正数;

③任何数的偶数次幂都是非负数;

④1的任何次幂都得1,0的任何次幂都得0;

⑤-1的偶次幂得1;-1的奇次幂得-1;

⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

有理数混合运算法则:①先算乘方,再算乘除,最后算加减。

②如果有括号,先算括号里面的。

北师大初中数学知识3

字母表示数

代数式的概念:

用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如应写作;

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如平方米

代数式的系数:

代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。

注意:①单个字母的系数是1,如a的系数是1;

②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1

代数式的项:

代数式表示6x2、-2x、-7的和,6x2、-2x、-7是它的项,其中把不含字母的项叫做常数项

注意:在交待某一项时,应与前面的符号一起交待。

同类项:

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

合差同类项:

把代数式中的同类项合并成一项,叫做合并同类项。

①合并同类项的理论根据是逆用乘法分配律;

②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

注意:

①如果两个同类项的系数互为相反数,合并同类项后结果为0;

②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;

③只要不再有同类项,就是最后结果,结果还是代数式。

根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。

根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

注意:

①去括号时,要连同括号前面的符号一起去掉;

②去括号时,首先要弄清楚括号前是“+”号还是“-”号;

③改变符号时,各项都变号;不改变符号时,各项都不变号。

北师大初中数学知识点4

绝对值

⒈绝对值的几何定义

一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。

2.绝对值的代数定义

⑴一个正数的绝对值是它本身;⑵一个负数的绝对值是它的相反数;⑶0的绝对值是0.

可用字母表示为:

①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

可归纳为①:a≥0,<═>|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0,<═>|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)经典考题

如数轴所示,化简下列各数

|a|,|b|,|c|,|a-b|,|a-c|,|b+c|

解:由题知道,因为a>0,b<0,c<0,a-b>0,a-c>0,b+c<0,

所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c

3.绝对值的性质

任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。所以,a取任何有理数,都有|a|≥0。即⑴0的绝对值是0;绝对值是0的数是0.即:a=0<═>|a|=0;

⑵一个数的绝对值是非负数,绝对值最小的数是0.即:|a|≥0;

⑶任何数的绝对值都不小于原数。即:|a|≥a;

⑷绝对值是相同正数的数有两个,它们互为相反数。即:若|x|=a(a>0),则x=±a;

⑸互为相反数的两数的绝对值相等。即:|-a|=|a|或若a+b=0,则|a|=|b|;

⑹绝对值相等的两数相等或互为相反数。即:|a|=|b|,则a=b或a=-b;

⑺若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。

(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

北师大初中数学知识点相关文章

一键复制全文保存为WORD
相关文章