高一数学必修一有什么必记知识点

同时可以培养一种独立思考和解题正确的责任感,在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。以下是小编给大家整理的高一数学必修一必记知识点,希望大家能够喜欢!

高一数学必修一必记知识点1

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数无界。

高一数学必修一必记知识点2

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

定义

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

高一数学必修一必记知识点3

定义域

(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;

值域

名称定义

函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合

常用的求值域的方法

(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等

关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。

“范围”与“值域”相同吗?

“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。


高一数学必修一有什么必记知识点相关文章

一键复制全文保存为WORD
相关文章