高中数学公式大全

高中数学公式是必须掌握的。高中数学的难度一直都是所有科目中最大的,尤其是对于女生来说,学数学真的是很难啊。今天小编在这给大家整理了高中数学公式大全,接下来随着小编一起来看看吧!

高中数学公式大全

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a

根与系数的关系X1+X2=-b/aX1·X2=c/a 注:韦达定理

判别式b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有一个实根

b2-4ac<0 注:方程有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n·2

2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2px x2=2pyx2=-2py

直棱柱侧面积S=c·h

斜棱柱侧面积S=c'·h

正棱锥侧面积S=1/2c·h'

正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l

球的表面积S=4pi·r2

圆柱侧面积S=c·h=2pi·h

圆锥侧面积S=1/2·c·l=pi·r·l

弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r

锥体体积公式V=1/3·S·H圆锥体体积公式V=1/3·pi·r2h

斜棱柱体积V=S'L 注:其中S'是直截面面积,L是侧棱长

柱体体积公式;V=s·h圆柱体V=pi·r2h

正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径

余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角

圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标

圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

抛物线标准方程y^2=2pxy^2=-2px x^2=2pyx^2=-2py

直棱柱侧面积S=c·h斜棱柱侧面积S=c'·h

正棱锥侧面积S=1/2c·h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi·r2

圆柱侧面积S=c·h=2pi·h圆锥侧面积S=1/2·c·l=pi·r·l

弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r

锥体体积公式V=1/3·S·H

斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s·h圆柱体V=pi·r2h

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B))

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

2+4+6+8+10+12+14+…+(2n)=n(n+1)5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3

常用导数公式

1、y=c(c为常数)y'=0

2、y=x^ny'=nx^(n-1)

3、y=a^xy'=a^xlna

4、y=e^xy'=e^x

5、y=logaxy'=logae/x

6、y=lnxy'=1/x

7、y=sinxy'=cosx

8、y=cosxy'=-sinx

9、y=tanxy'=1/cos^2x

10、y=cotxy'=-1/sin^2x

11、y=arcsinxy'=1/√1-x^2

12、y=arccosxy'=-1/√1-x^2

13、y=arctanxy'=1/1+x^2

14、y=arccotxy'=-1/1+x^2

高中数学导数学习方法

1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。

2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。

3、一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。

根据图像就可以求出你想要的东西,比如最大值或最小值等。

4、特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。

方差的定义和公式

设一组数据x1,x2,x3……xn中,各组数据与它们的平均数x的差的平方分别是(x1-x)2,(x2-x)2……(xn-x)2,那么就可以用他们的平均数对其进行衡量,公式为

该公式主要用来衡量这组数据的波动大小,并把它叫做这组数据的方差。为了简便我们也可以将其记做

(其中x为该组数据的平均值)

如果一组数据的方差越小,那么就证明该组数据的稳定性较高。

高中数学公式需要背吗

要背的 给你介绍点方法数学公式众多,要记清每一个,真的是不容易。往往是记这忘那的,怎么办才能记得更牢固?这真是个难题呢。但是,也得解决呀,那就是:

第一,在理解中记忆。把一个公式的背景理解了,再记公式。比如,等差数列求和公式,你得会自己推导,把它当一个例题来做。就这个公式而言,也可形象地把等差数列看阶梯,象个梯形面积公式。

第二,多背。只有多看多记才行。这是最基本原理,放之四海而皆准。重点就是一个“多”字。

第三,做题中记忆理解公式。千万不要“简单题不用做,难题不会做”,简单题做一做,为了记公式。要准确,不能老是翻书。

第四,要讲点技巧。比如三角函数里的诱导公式,真的要理解书上那句黑体字意义。第五,把所有公式写成一个纸卡,放在床头,睡前看。这个是具体好办法呢。永不放弃。

高中数学怎么学才能学好

1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。如:我在讲课时的注解。

2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

3、记忆数学规律和数学小结论。

4、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。

5、争做数学课外题,加大自学力度。

6、反复巩固,消灭前学后忘。

7、学会总结归类。从数学思想分类从解题方法归类从知识应用上分类。


高中数学公式大全相关文章

一键复制全文保存为WORD