高二数学知识点下册

数学是考试的重点考察科目,数学知识的积累和解题方法的掌握,需要科学有效的复习方法,同时需要持之以恒的坚持。下面是小编给大家整理的一些高二数学的知识点,希望对大家有所帮助。

高二数学知识点

数列定义:

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:an=a1+(n-1)d(1)

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

以上n均属于正整数。

解释说明:

从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

且任意两项am,an的关系为:an=am+(n-m)d

它可以看作等差数列广义的通项公式。

推论_式:

从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

基本公式:

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

末项=首项+(项数-1)×公差

高二数学必修五知识点

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形.

(3)求圆方程的方法:

一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.

3、高中数学必修二知识点总结:直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆.

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

5、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a.

高二数学必修四知识点

1.人教版高中数学正弦二倍角公式:sin2α=2cosαsinα

推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA

拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2]1+sin2A=(sinA+cosA)^2

2.人教版高中数学余弦二倍角公式:余弦二倍角公式有三组表示形式,三组形式等价。

(1)Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2]

(2)Cos2a=1-2Sina^2

(3)Cos2a=2Cosa^2-1

推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1=1-2(sinA)^2

3.人教版高中数学正切二倍角公式:tan2α=2tanα/[1-(tanα)^2]

推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]

降幂公式:cosA^2=[1+cos2A]/2sinA^2=[1-cos2A]/2

变式:sin2α=sin2α+π4-cos2α+4π=2sin2a+4π-1=1-2cos2α+4π;cos2α=2sinα+4πcosα+4π

4.人教版高中数学半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);sin^2(a/2)=(1-cos(a))/2;cos^2(a/2)=(1+cos(a))/2;tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

5.人教版高中数学两角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

高二数学知识点下册

数列定义:

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:an=a1+(n-1)d(1)

前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

以上n均属于正整数。

解释说明:

从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

且任意两项am,an的关系为:an=am+(n-m)d

它可以看作等差数列广义的通项公式。

推论_式:

从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

基本公式:

和=(首项+末项)×项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

末项=首项+(项数-1)×公差



高二数学知识点下册相关文章

一键复制全文保存为WORD
相关文章