常考的八年级数学上册知识点

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。下面小编为大家带来常考的八年级数学上册知识点,希望大家喜欢!

八年级数学上册知识点

第十一章三角形

一、知识框架:

知识概念:

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

13、公式与性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°

⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:

①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

第十二章全等三角形

一、知识框架:

二、知识概念:

1、基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形。

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

⑷对应边:全等三角形中互相重合的边叫做对应边。

⑸对应角:全等三角形中互相重合的角叫做对应角。

2、基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定定理:

⑴边边边():三边对应相等的两个三角形全等。

⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等。

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

5、证明的基本方法

⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证。

⑶经过分析,找出由已知推出求证的途径,写出证明过程。

第十三章轴对称

一、知识框架:

二、知识概念:

1、基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

⑸等边三角形:三条边都相等的三角形叫做等边三角形。

2、基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

②对称的图形都全等。

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等。

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

⑶关于坐标轴对称的点的坐标性质

八年级数学上册知识点梳理

平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

中被开方数的取值范围:被开方数a≥0

平方根性质:①一个正数的平方根有两个,它们互为相反数。

②0的平方根是它本身0。③负数没有平方根

开平方;求一个数的平方根的运算,叫做开平方。

平方根与算术平方根区别:

1、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

联系

2、二者之间存在着从属关系。2、存在条件相同。3、0的算术平方根与平方根都是0

含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

求正数a的算术平方根的方法;

完全平方数类型

①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

三个重要的非负数:

求正数a的平方根的方法;完全平方数类型

①想谁的平方是数a。②所以a的平方根是多少。③用式子表示=。

公式:(a≥0)∣a∣=

八年级数学上册知识点归纳

1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数

2、平均数

平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。

加权平均数。

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

第七章 平行线的证明

1、平行线的性质

一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。

也可以简单的说成:

两直线平行,同位角相等;

两直线平行,内错角相等;

两直线平行,同旁内角互补。

2、判定平行线

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

也可以简单说成:

同位角相等两直线平行 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。

其他两条可以简单说成:

内错角相等两直线平行

同旁内角相等两直线平行


常考的八年级数学上册知识点相关文章

一键复制全文保存为WORD
相关文章