精选数学学习计划范文(通用17篇)
1.继续抓好集体备课。每周一次的集体备课必须抓落实,发挥集体智慧的力量研究数学高考的动向,学习与研究《考试大纲》,注意哪些内容降低要求,哪些内容成为新的高考热点,每周一次研究课。
2.安排好复习内容。
3.精选试题,命题审核。
4.测试评讲,滚动训练。
5.精讲精练:以中等题为主。
一、复习的主要内容
1、会数、会读、会写100以内的数;会比较数的大小,并能结合实际进行估计。
2、能正确地口算两位数加、减整十数以及两位数加、减一位数,会用加减法解决简单的生活实际问题,发展估算。
3、识别长方形、正方形、三角形、平行四边形和圆,能在钉子板上围出和在方格纸上画出长方形、正方形、三角形、平行四边形。
4、认识元、角、分,了解它们之间的关系,会用钱款实际购物并进行简单的计算。
5、认识简单的统计表,经历数据的收集和整理过程,会用统计图中的数据解决一些简单的问题。
二、复习的主要目标
1、引导同学主动整理知识,回顾自己的学习过程和收获,逐步养成回顾和反思的习惯。
2、通过总复习使同学在本学期学习到的知识系统化。巩固所学的知识,对于缺漏的知识进行加强。
3、通过形式多样化的练习,充分调动同学的学习积极性,让同学在生动有趣的活动中经历、体验、感受数学学习的乐趣。
4、有针对性的辅导,帮助同学树立数学学习信心,使每个同学都得到不同程度的发展。
三、复习的具体设想
1、首先组织同学回顾与反思自己的学习过程和收获。可以让同学说一说在这一学期里都学了哪些内容,哪些内容最有趣,觉得哪些内容在生活中最有用,感觉学习比较困难的是什么内容等等。也可以引导同学设想自己的复习方法。这样同学能了解到自己的学习情况,明确再努力的目标,教师更全面地了解了同学的学习情况,为有针对性地复习辅导指明方向。
2、以游戏活动为主进行总复习。游戏是一年级儿童最喜欢的活动。游戏让同学在玩中复习,在复习中玩,在玩与复习相结合中发展。如复习100以内数的认识,让同学玩猜数、对口令、接龙等游戏,加深数感。又如加减法计算的复习,不能出现单纯的题海练习,这样同学会厌倦的,可以设计爬梯子、找朋友、搭积木、打地基等游戏活动,同学边玩边熟练加减法的正确计算。
3、与生活密切联系。复习时同样要把数学知识与日常生活紧密联系。可以设计一些生活情境画面给同学用数学的眼光去观察,提出数学问题,解决数学问题;可以让同学到生活中寻找数学问题,然后在全班交流,同学不仅感受生活即是数学,数学即是生活,而且各方面都得了发展。
4、设计专题活动,渗透各项数学知识。专题活动的设计可以使复习的内容综合化,创设给同学比较全面地运用所学知识的机会。如设计同学调查班级同学最喜欢的季节或最喜欢的学科,同学在调查中经历数据的收集和整理,绘制成统计图和统计表,根据表中的数据,自己提出问题,自己解决问题。在这个专题活动中同学复习了统计、100以内数、加减计算,用加减法解决一些简单的问题等知识,同时发展了同学的合作交流、实践操作等能力,得到良好的情感体验。又如"我当家"专题活动,让同学记录家中一天所发生的数学故事,然后与全班同学交流。
5、以实践操作为主进行总复习。实践操作也是同学最喜欢的数学学习活动形式之一。如拼图、折纸等操作活动加深长方形、正方形、三角形、平行四边形和圆的认识。模拟购物、兑换零钱的操作活动学会使用人民币,进行简单的钱款计算,解决简单的实际问题。
四、复习措施
1、加强学习目的的教育,做好同学的思想教育工作,提高同学的学习积极性,让同学想学习、爱学习、会学习。
2、做好学困生的转化工作,知识补差与思想补差双管齐下;并根据他们的实际情况,有针对性地补差,开好“小灶”,让他们有进步。
3、时刻关注同学的学习状态,与家长密切配合,共同督促同学学习。
五、复习时间安排
1、认识图形(认识长方形、正方形、三角形、平行四边形和圆) 1课时
2、加与减(20以内、100以内的加减法,连加、连减、加减混合、有小括号的运算,用加减法解决简单的生活问题。)2课时
3、100以内数的认识 1课时
4、认识元、角、分,进行简单的计算。1课时
5、分类与整理(收集整理数据,用统计数据解决简单的问题。) 1课时
6、找规律 1课时
7、综合练习 2课时
寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。
首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。
1、第一阶段复习计划
复习高数书上册第一章,需要达到以下目标
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
2、第二阶段复习计划
复习高数书上册第二章1-3节,需达到以下目标
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
3、第三阶段复习计划
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.
3.掌握用洛必达法则求未定式极限的方法.
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
在过度阶段,我觉得最重要的是先让孩子了解小学和初中是差别的,在心态上要发生变革,要意识到从小学到中学是一个跨越,区别非常大。
从知识的角度,在小学就是套方法,初中更加注重从概念的素质去理解问题,需要建立一个体系。小学的知识是一块一块的,相互之间联系不是很大,它更偏重于技巧和题型,小学课本只是告诉了基本方法,但难度并没有上去,没有学到素质的东西。而初中的知识更强调体系感,知识上难度更大。
在考察方面,小学比力偏重于结果,初中一方面强调概念的体系性,另一方面更强调过程。
学习要求上,初中的知识看起来比力简单,但是其实他的.应用是非常复杂的,它的拓展性很强,变革灵活。这是和小学有很大差另外。小学的知识虽然也会有各种各样的变形,但是基本模型都见过了,也都差未几了。初中更强调理解,对于理解和应用的变革更多些。
在心态上,刚上初中学生都会觉得知识特别简单,就不认真学,觉得本身都会有理解,但是真正考试上遇到知识上应用的题,就很容易失分。再加上现在学的计算题,同学们都觉得简单,其实在现在这个阶段,他们对计算的练习是远远不敷的。
这就是阶段同学们面临的问题,所以针对这些问题,有以下几个建议:
首先:要有意识,有认识:认识小学和初中有很大的差别,不克不及在完全不了解的情况下就去说规划,规划要做的第一件事就是去了解这些差别。
第二:就是把踏实下来把计算练好,重视概念。初一这个阶段没有须要让学生见特别多,特别花的东西,初一是一个练内功的阶段,把各方面的基础打好了,后边才能拔高。
第三:心态上不要觉得这些知识简单,更加强调解题过程。
第四:对于初中的数形结合思想,分类讨论的思想要慢慢有意识的建立起来。
俗话说:“学好数理化,走遍天下都不怕。”这句话虽然说得有些夸张,但也充分说明了数学的重要性。为了提高自己的数学成绩,培养自己的数学兴趣,特拟定如下计划:
一、情况分析
在众多科目中,我的数学成绩最差,每次都考不了高分,长期以来,我对数学也失去了信心,影响了总成绩。
二、任务目标
通过本学期的努力,我要使自己消除对数学的厌烦心里,培养自己学好数学的信心,使自己的数学成绩有较大提高,为高三升学打下坚实的基础。
三、具体做法:
1、培养信心
2、养成习惯.每天做到课前预习,课后复习
3.抓住课堂。课堂上我认真听课,聚精会神,思维紧跟老师,不敢开小差。
4.加大练习力度
刚开始,我从最基础的题入手,以课本上的习题为准,反复练习,打好基础,再找一些课外的习题,帮助自己开拓思路,提高自己的分析、解决能力,掌握一般的解题思路。解题时要求自己细心、精确,以便不再考试时因粗心丢分。
5.牢记 基础理论,善于利用辅导书籍,打好基本功——基础知识万万不可忽视。要把概念、公式都牢牢地印在脑海里。
6.高质量的完成作业。我每次要求自己认真完成老师布置的作业,遇到不会的题目决不轻易放弃,要发扬“钉子”精神,钻进去思考,是在做不出来就向老师和同学请教,这样自己就会对这道题留下深刻的印象,再次遇到相同类型的题时,便能迎刃而解了。
我相信,只要我坚持不懈,持之以恒,我的数学成绩一定能更上一层楼。
二〇一X年四月七日
本学期数学学习总结
时光如水,岁月如梭。转眼间,一个学期已经结束了,回顾一学期来,我在数学方面取得了很大的进步,现将取得进步的原因总结如下:
一、培养对数学的兴趣
孔子曰:“知之者不入好之者,好知者不如乐之者。”这句话说得是非常有道理的,它深刻地阐释了兴趣对学习的重要性。刚开始,我先硬着头皮学数学,并投以很大的热情,争取做的好一些,慢慢地,我的做法得到了老师和同学们的夸奖和鼓励,自然我也就更愿意做了,就这样,兴趣培养起来了。也善于思考了,
数学成绩也提高了不少。
二、有持之以恒的精神,保证计划落实到位
自数学计划制定之日起,我就严格要求自己按照以上计划执行,不给自己打折扣,每天的任务保证完成。不给自己找种种借口拖延计划的完成,要求自己必须今日事今日做。我经常告诫自己“任务不能积累,因为明天又有新的任务在等待着你”。就这样,凭着持之以恒的精神和坚持不屑的努力,我每天都做到课前预习,课下复习的好习惯,这对我的数学提高有了很大的帮助。
三、加大练习力度
要想学好数学,多做题时难免的。刚开始我从最基础的题入手,以课本上的'习题为准,反复练习打好基础,然后,再找一些课外习题,帮助自己开拓思路,提高自己分析、解决问题的能力,掌握一些解题规律。对于易错、常错的题,我都把他们记录到纠错本上,加强记忆。再有,每次做题时,我都让自己高度集中,能够进入状态,做题时我要求自己将步骤写完整,认真、仔细,以免这些错误造成考试时的失分。
以上是我在学习数学上的一些做法,尽管如此,我在数学中还存在许多不足,如缺乏耐心、不能很好的举一反三等。这些是我以后在学习数学中需要改进的地方,在今后的学习中,我一定克服以上不足,使自己的数学成绩更上一层楼。
一,熟悉大纲。
1.不超纲,注意紧扣课本。
回到课本,并非简单地重复和循环,而是要螺旋式的上升和提高。对课本内容引申、扩展。加强纵横联系;对课本的习题可改动条件或结论,加强综合度,以求深化和提高。
2.全面复习。
复习目的不全是为升学,更重要是为今后学习和工作奠基。由于考查面广,若基础不扎实,不灵活,是难以准确完成。因此必须系统复习,不能遗漏。
3.狠抓双基。
重视基本概念、基本技能的复习。对一些重要概念、知识点作专题讲授,反复运用,以加深理解。
4.提高能力。
复习要注意培养学生思维的求异性、发散性、独立性和批评性,逐步提高学生的审题能力、探究能力和综合多项知识或技能的解题能力。
5.分类指导。
学生存在智力发展和解题能力上差异。对优秀生,指导阅读、放手钻研、总结提高的方法去发挥他们的聪明才智。中等生则要求跟上复习进度,在训练中提高能力,对学习有困难的学生建立知识档案,实行逐个辅导,查漏补缺。
具体做法。
二,重视基础。
基础知识、基本技能、基本方法始终是中考考查的重点。在备战中考中,应夯实基础,抓住一个“基”字,追求一个“效”字。要注意知识之间的内在联系,学会构建知识网络,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合,寻找解题途径、优化解题过程。2.强化题组训练,感悟数学思想方法
在备战中考的第二阶段(4、5月份),应突出重难点,强化一个“精”字,兼顾一个“深”字。做综合题,要养成解题后反思的好习惯。同时总结出所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化。对于几何题,可以多观察图形、多联想、多变式,形成一题多变。3.加强模拟训练,注意解题规范、提高解题速度
在备战中考的第三阶段(6月份),应多做些模拟训练,立足一个“透”字,注重一个“准”字。强化对知识的掌握和答题速度、节奏、经验等方面的积累训练,训练考试能力。在此特别指出的是,解答题过程分比最后的答案重要得多。在平日的作业、练习、考试都要进行规范书写,到了考试才能减少无谓丢分。4.用好“错题本”,攻克薄弱点
编制“错题本”深入纠错,是非常有效的复习方法。把历次考试中不会做的题、做错了的题进行认真的分析,总结经验教训。并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正。在中考前发现的问题越多,纠正越及时,提高也就越快,信心就越足。5.立足课堂,紧跟老师
复习课基本以练习为主,同学们在复习课上要做好信息处理和分析,把握好课堂复习和自我复习的关系。另外,上课不能只听老师讲,还要敢于提出疑问,积极提出自己新颖独到的思考方法和策略
三,复习要点。
1.以教材为本,抓好章节复习
在期末复习中有必要制订一个可行的学习计划,先以教材为本把各章节中的知识点系统梳理,构建有自己特色的知识板块。在复习过程中要特别重视各章节的重点内容,典型例题,课本习题,动脑总结这些例题的解题思路是怎样形成的,提供的方法能用来解决哪些问题,重视这些题目的变式训练,拓展自己的视野,做到举一反三,触类旁通,才能短时间出效率,更好地发展自己的能力。
2.提高课堂45分钟的听课效率,搞好查缺补漏工作
期末复习期间必须跟紧老师,课堂45分钟的复习内容,用心聆听,细心体会,动脑琢磨,对已学过的知识回忆感悟体会,巩固掌握不扎实的部分,搞好查处补漏的工作。对于一些容易出错的概念辨析有必要把涉及的概念在理解的基础上记扎实,如“判别方程组是否属于二元一次方程组”“非负整数解概念的理解”“算术平方根与平方根的区别”“数的分类”“有关各类三角形高的画法”“三线八角的确定”“点到直线的距离与垂线段的关系”等,另外对于自己在复习期间出错的问题不要一概以“马虎”取而代之,一定要重视这些问题,找出问题的病根,是审题不细出错,还是计算问题,题意理解中的问题还是概念掌握的不准确,“对症下药”才能不犯二次错误,也从中积累了一定的方法培养了自己的纠错能力。
3.提炼归纳数学方法,培养数学思想
在复习过程中,光重视知识的学习是不够的,因为在解决具体问题时出现的障碍,往往不是知识本身不够带来的,而是思想不对头造成的,所以我们要特别注意学习方法如“数形结合”“化归转化”“分类讨论”等数学思想方法,其中数形结合的思想是很常用的,如“对不等式及不等式的解集的理解”“对无理数的认识”中都有数形思想的充分体现,这种数形思想既形象,又直截了当,能给人清晰的解题思路,适于初二学生的认知特点,我们在复习的过程中可大胆适用这种思想方法。
数学作为一门应用科学,既源于社会生活,反过来又服务于社会生活。每位学生要自己去寻找,收集联系实际的数学问题,尤其是新教材更侧重的是对学生应用能力的考察。在本册中方程组与不等式有关的实际应用问题就是复习中重中之重,往往这部分内容是大多数同学感到紧张的部分,越是这样在复习中应有意识的加大力度,有的放矢地进行适当的解应用题的一般方法训练:“认真阅读,理解题意——抽象概括,建立数学模型——解决问题——解决实际问题”。
4.加强综合训练,提高解题速度
在复习的最后环节中应加强综合试题的训练,这样使各章节的内容系统化、条理化。并且在解题时间、技巧、方法上也搜集了一些经验,为期末考试做了充分的思想上的准备
1 第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
2第二阶段复习计划:
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
3 第三阶段复习计划:
复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:
1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.
3.掌握用洛必达法则求未定式极限的方法.
4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。
4 第四阶段复习计划
复习高数书上册第四章 第1-3节。需达到以下目标:
1.理解原函数的概念,理解不定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。
本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。
5 第五阶段复习计划
复习高数书上册第五章第1-3节。达到以下目标:
1.理解定积分的几何意义。
2.掌握定积分的性质及定积分中值定理。
3.掌握定积分换元积分法与定积分广义换元法.
本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。
6 第六阶段复习计划
复习高数书上册第五章第4节,第六章第2节。达到以下目标:
1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。
3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。
本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。
一、 预习。
预习一般是指在老师讲课以前,自己先独立地阅读新课内容,做到初步理解,做好上课的准备。所以预习就是自学。
预习要做到下列四点:1、通览教材,初步理解教材的基本内容和思路。
2、预习时如发现与新课相联系的旧知识掌握得不好,则查阅和补习旧知识,给学习新知识打好牢固的基础。
3、在阅读新教材过程中,要注意发现自己难以掌握和理解的地方,以便在听课时特别注意。
4、做好预习笔记。预习的结果要认真记在预习笔记上,预习笔记一般应记载教材的主要内容、自己没有弄懂需要在听课着重解决的问题、所查阅的旧知识等。
二、上课。
课堂教学是教学过程中最基本的环节,不言而喻,上课也应是同学们学好功课、掌握知识、发展能力的决定性一环。
上课要做到:1、课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。
2、要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。
3、上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的各种因素。
4、听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。
5、如果遇到某一个问题或某个问题的一个环节没有听懂,不要在课堂上“钻牛角尖”,而要先记下来,接着往下听。不懂的问题课后再去钻研或向老师请教。
6、要努力当课堂的主人。要认真思考老师提出的每一个问题,认真观察老师的每一个演示实验,大胆举手发表自己的看法,积极参加课堂讨论。
7、要特别注意老师讲课的开头和结尾。老师的“开场白”往往是概括上节内容,引出本节的新课题,并提出本节课目的要求和要讲述的中心问题,起着承上起下的作用。老师的课后总结,往往是一节课的精要提炼和复习提示,是本节课的高度概括和总结。
8、要养成记笔记的好习惯。最好是一边记一边听,当听与记发生矛盾时,要以听为主,下课后再补上笔记。记笔记要有重点,要把老师板书的知识提纲、补充的课外知识、典型题目的解题步骤和课堂上没有听懂的问题记下来,供课后复习时参考。
三、作业。
作业是学习过程中一个重要环节。通过作业不仅可以及时巩固当天所学知识,加深对知识的理解,更重要的是把学过的知识加以运用,以形成技能技巧,从而发展自己的智力,培养自己的能力。作业必须做到:
1、先看书后作业,看书和作业相结合。只有先弄懂课本的基本原理和法则,才能顺利地完成作业,减少作业中的错误,也可以达到巩固知识的目的。
2、注意审题。要搞清题目中所给予的条件,明确题目的要求,应用所学和知识,找到解决问题的途径和方法。
3、态度要认真,推理要严谨,养成“言必有据”的习惯。准确运用所学过的定律、定理、公式、概念等。作业之后,认真检查验算,避免不应有的错误发生。
4、作业要独立完成。只有经过自己动脑思考动手操作,才能促进自己对知识的消化和理解,才能培养锻炼自己的思维能力;同时也能检验自己掌握的知识是否准确,从而克服学习上的薄弱环节,逐步形成扎实的基础。
5、认真更正错误。对于作业中出现的错误,要认真改正。要懂得,出错的地方正是暴露自己的知识和能力弱点的地方。经过更正,就可以及时弥补自己知识上的缺陷。
6、作业要规范。解题时不要轻易落笔,要在深思熟虑后一次写成,切忌涂改过多。书写工整,步骤简明有条理,完整无缺。作业时,各科都有各自的格式,要按照各学科的作业规范去做。
7、作业保存好,定期将作业分门别类进行整理,复习时,可随时拿来参考。
一、学情分析总体情况:
多数学生已经形成良好的学习习惯,课上能认真听讲,积极思维,课后认真按时完成作业,及时改错。但也有少数学生惰性强,课上不动脑筋思考问题,写作业效率低,不能主动及时改错。
二、简要复习目标:
使学生获得的知识更加巩固,计算能力和估算能力更加提高,能用所学的数学知识解决简单的实际问题,提高学习数学的兴趣,建立学好数学的信心。
三、主要内容学习状况
1、数与代数:口算乘除法,笔算乘除法以及估算学得都很好,认识一个整体的几分之一和几分之几不太熟练,年月日、千米的认识和吨的认识还存在着一些问题。解决问题的办法:;加强连续两次平均分的实际问题训练,用小数加、减法解决一些实际问题,进行求整体的几分之一或几分之几的练习,从实际中了解千米与吨的知识。
2、空间与图形:对生活中常见的平移、旋转、对称现象已初步形成了概念,物体的三视图学得也较好,但面积的单位、计算却还有一些问题。解决问题的办法:多练习一些平移图形的训练,进行与计算面积有关的实际问题训练。
3、统计:统计表与条形统计图学得较好,但求平均数的方法却存在着问题。解决问题的方法:针对学生求平均数时只求出总数而不再去求平均数的现象多进行练习,并让学生懂得什么才是平均数,从而掌握求平均数的方法。
四、采取措施
1、使用新教材,老师和学生都有一个适应的过程,正视自己在教学中的问题,在期末复习中尽最大地努力弥补。
2、重视学生学习习惯的培养(尤其审题习惯),学习方法的指导。
3、老师要准确了解学生知识技能的掌握情况,做到心中有数,才能使复习有针对性、实效性。
4、课上注重知识的整理,基本概念理解到位,比较知识之间的区别与联系,形成知识网络。
5、注重对知识的整合,一题多用。如:一些图形中面积的计算。
6、关注后进生,加强对他们的辅导。
五、复习方法:
讲练结合,点线结合。
(先各个知识点突破,再知识点综合,最后解决生活中的问题。)突出重点,突破难点。
复习内容:
1、掌握数的顺序和大小,掌握9以内各数的组成。
2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和9以内的减法。
3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
5、初步了解分类的方法,会进行简单的分类。
6、认真作业、书写整洁的良好习惯。
7、通过实践活动体验数学与日常生活的密切联系。
复习目标:
1、理解加、减法的含义,进一步理解和掌握9以内的加、减法,能正确、熟练地口算相关的式题,形成相应的计算技能。
2、在具体的活动中,进一步认识长方体、正方体、圆柱和球,认识上下、前后、左右等方位,能应用分一分、排一排、数一数等方法收集和整理一些简单的数据,培养初步的空间观念和统计观念。
3、在应用所学知识解决简单实际问题的过程中,进一步发展分析问题、解决问题的能力,体会数学在日常生活中的广泛应用,培养初步的数学应用意识。
复习措施:
1、复习前,充分了解学生的学习情况,弄清学生对哪些知识掌握的比较好,哪些知识还存在问题,存在什么问题,从而有计划、有针对性地开展复习活动,以增强复习的实效性。
2、复习加减法计算时,可以采用游戏、竞赛等多种形式组织学生练习,以激发学生练习的兴趣,提高计算的正确率和熟练程度,促进计算技能的形成。
3、扎扎实实打好基础知识和基本技能,同时重视培养学生创新意识和学习数学的兴趣。
4、把握好知识的重点、难点以及知识间的内在联系,使学生都在原来的基础上有所提高。
5、把上半学期所学知识分块归类复习,针对单元测试卷、练习册、作业中容易出错的题作重点的渗透复习、设计专题活动,渗透各项数学知识。专题活动的设计可以使复习的内容综合化,给学生比较全面地运用所学知识的机会。
6、根据平时教学了解的情况,结合复习有关的知识点做好有困难学生的辅导工作。
具体安排:
1、数的组成,物体的位置与顺序。(2课时)掌握数的顺序及组成;能确定物体前后、左右、上下的位置与顺序。
2、立体图形与平面图形(1课时)进一步认识长方体、立方体、圆柱体、球和长方形、正方形、三角形、圆。
3、分类(1课时)掌握分类的方法。
4、9以内加减法计算(3课时)通过对算式的计算与分类,整理加减计算方法,提高计算的正确率。激发学生积极思考问题,在复习中感知数学思考的有序性和条理性。
5、图文题(2课时)从量的意义上揭示部分和整体的关系,使学生进一步认识加、减法的关系。提高学生理解图意的能力,能根据图分析简单的数量关系,渗透图中所反映的事物概念之间的种属关系。
学习时间:3月份-6月份
学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容
学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。
学习计划:
一、3月24号上午9:00----11:00
不定积分
1.原函数、不定积分的概念;
2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;
3.会求有理函数和简单无理函数的积分.
定积分
1.定积分的概念和性质,定积分中值定理;
2.定积分的换元积分法与分部积分法;
3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;
4.反常积分的概念与计算;
5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.
:本章的基础课后习题
二、3月31号上午9:00----11:00
微分方程
1.微分方程及其阶、解、通解、初始条件和特解等概念;
2.变量可分离的微分方程及一阶线性微分方程的解法;
3.齐次微分方程的解法;
4.线性微分方程解的性质及解的结构;
5.二阶常系数齐次线性微分方程的解法;
6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.
作业:本章的基础课后习题
三、4月7号上午9:00----11:00
来总部阶段测评
四、4月14号上午9:00----11:00
多元函数微分学
1.二元函数的概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;
4.多元复合函数一阶、二阶偏导数的求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
作业:本章的基础课后习题
五、4月21号上午9:00----11:00
重积分
1.二重积分的概念和性质,二重积分的中值定理;
2.会利用直角坐标、极坐标计算二重积分.
级数
1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;
2.几何级数与级数的收敛与发散的条件;
3.正项级数收敛性的比较判别法和比值判别法;
4.交错级数和莱布尼茨判别法;
5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;
6.函数项级数的收敛域及和函数的概念;
7.幂级数的收敛半径、收敛区间及收敛域的求法;
8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;
9.函数展开为泰勒级数的充分必要条件;
10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
作业:本章的基础课后习题
六、4月28号上午9:00----11:00
行列式
1.行列式的概念和性质,行列式按行(列)展开定理.
2.用行列式的性质和行列式按行(列)展开定理计算行列式.
3.用克莱姆法则解齐次线性方程组.
作业:本章的基础课后习题
对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式
七、5月5号上午9:00----11:00
矩阵
1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.
2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.
3.方阵的幂与方阵乘积的行列式的性质.
4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.
5.伴随矩阵的概念,用伴随矩阵求逆矩阵.
6.分块矩阵及其运算
作业:本章的基础课后习题
八、5月12号上午9:00----11:00
总部考试
九、5月19号上午9:00----11:00
向量与线性方程组
1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.
2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.
3.非齐次线性方程组解的`结构及通解.
4.用初等行变换求解线性方程组的方法.
5.维向量、向量的线性组合与线性表示的概念
6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.
7.向量组的极大线性无关组和向量组的秩的概念和求解.
8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.
作业:本章的基础课后习题
十、5月26号上午9:00----11:00
矩阵的特征值和特征向量
1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.
2.规范正交基、正交矩阵的概念以及它们的性质.
3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.
4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.
5.实对称矩阵的特征值和特征向量的性质.
作业:本章的基础课后习题
二次型
1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.
2.正交变换化二次型为标准形,配方法化二次型为标准形.
3.正定二次型、正定矩阵的概念和判别法.
作业:本章的基础课后习题
十一、6月2号上午9:00----11:00
考试
十二、6月9号上午9:00----11:00
随机事件和概率
1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.
2.概率、条件概率的概念,概率的基本性质.
3.会计算古典型概率和几何型概率.
4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.
5.事件独立性的概念与计算.
作业:本章的基础课后习题
随机变量及其分布
1.随机变量的概念,分布函数的概念及性质.
2.独立重复试验的概念与有关事件概率的计算.
3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.
4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.
5.随机变量函数的分布.
作业:本章的基础课后习题
十三、6月16号上午9:00----11:00
多维随机变量及分布
1.多维随机变量的概念,多维随机变量的分布的概念和性质.
2.二维离散型随机变量的概率分布、边缘分布和条件分布.
3.二维连续型随机变量的概率密度、边缘密度和条件密度.
4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.
5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.
6.两个随机变量简单函数的分
作业:本章的基础课后习题
十四、6月23号上午9:00----11:00
考试
十五、6月30号上午9:00----11:00
随机变量的数字特征
1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.
2.会运用数字特征的基本性质,并掌握常用分布的数字特征.
3.随机变量函数的数学期望.
4.切比雪夫不等式.
作业:本章的基础课后习题
大数定律和中心极限定理
1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
作业:本章的基础课后习题
样本及抽样分布
1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.
2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.
3.正态总体的常用抽样分布.
作业:本章的基础课后习题
矩估计和最大似然估计
1.参数的点估计、估计量与估计值的概念.
2.矩估计法(一阶矩、二阶矩)和最大似然估计法.
作业:本章的基础课后习题
7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。
7月底到8月中旬:暑假强化班
学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。
(一).明确“主体”,突出重点。
第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究20xx-20__湖南对口高考试题.
第二轮复习的形式和内容
1.形式及内容:分专题的形式,具体而言有以下八个专题。
(1)集合、函数与导数。此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。
(2)三角函数、平面向量和解三角形。此专题中平面向量和三角函数的图像与性质,恒等变换是重点。
(3)数列。此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。
(4)立体几何。此专题注重点线面的关系,用空间向量解决点线面的问题是重点。
(5)解析几何。此专题中解析几何是重点,以基本性质、基本运算为目标。突出直线和圆锥曲线的交点、弦长、轨迹等。
(6)不等式、推理与证明。此专题中不等式是重点,注重不等式与其他知识的整合。
(7)排列与组合,二项式定理,概率与统计、复数。此专题中概率统计是重点,以摸球问题为背景理解概率问题。
((9)高考数学思想方法专题。此专题中函数与方程、数形结合、化归与转化、分类讨论思想方法是重点。
(二)、做到四个转变。
1.变介绍方法为选择方法,突出解法的发现和运用.
2.变全面覆盖为重点讲练,突出高考“热点”问题.
3.变以量为主为以质取胜,突出讲练落实.
4.变以“补弱”为主为“扬长补弱”并举,突出因材施教
5.做好六个“重在”。重在解题思想的分析,即在复习中要及时将四种常见的数学思想渗透到解题中去;重在知识要点的梳理,即第二轮复习不像第一轮复习,没有必要将每一个知识点都讲到,但是要将重要的知识点用较多的时间重点讲评,及时梳理;重在解题方法的总结,即在讲评试题中关联的解题方法要给学生归类、总结,以达触类旁通的效果;重在学科特点的提炼,数学以概念性强,充满思辨性,量化突出,解法多样,应用广泛为特点,在复习中要展现提炼这些特点;重在规范解法的示范,有些学生在平时的解题那怕是考试中很少注意书写规范,而高考是分步给分,书写不规范,逻辑不连贯会让学生把本应该得的分丢了,因此教师在复习中有必要作一些示范性的解答。
(三)、克服六种偏向。
1.克服难题过多,起点过高.复习集中几个难点,讲练耗时过多,不但基础没夯实,而且能力也上不去.
2.克服速度过快.内容多,时间短,未做先讲或讲而不做,一知半解,题目虽熟悉,却仍不会做.
3.克服只练不讲.教师不选范例,不指导,忙于选题复印.
4.克服照抄照搬.对外来资料、试题,不加选择,整套搬用,题目重复,针对性不强.
5.克服集体力量不够.备课组不调查学情,不研究学生,对某些影响教与学的现象抓不住或抓不准,教师“头头是道,夸夸其谈”,学生“心烦意乱”.不研究高考,复习方向出现了偏差.
6.克服高原现象.第二轮复习“大考”、“小考”不断,次数过多,难度偏大,成绩不理想;形成了心理障碍;或量大题不难,学生忙于应付,被动做题,兴趣下降,思维呆滞.
7.试卷讲评随意,对答案式的讲评。对答案式的讲评是影响讲评课效益的大敌。评讲的较好做法应该为,讲评前认真阅卷,讲评时将归类、纠错、变式、辩论等方式相结合,抓错误点、失分点、模糊点,剖析根源,彻底矫正。
1、首先要会学习,好的学习方法是努力抓好学习中的各个环节:预习、听讲、复习、总结、考试。课前预习,才能做到有针对性的听讲,带着问题听讲,高质量的听课是中学数学学习的基础和关键,课后复习总结是学习过程的升华,认真完成作业时它的重要体现,不要忽视每一天的作业,正所谓细节决定成败!只有落实好前面的学习任务,加之以一颗平常心、自信心对待考试,才可能在考试中立于不败之地。
2、积极培养自主学习习惯。初一课程设置较小学要多出很多,作为老师,要培养学生独立自主的学习习惯,作为学生更要主动适应学习习惯的改变,要及时主动地发现问题,解决问题,不要将今天的问题过夜!否则后患无穷,要总结出一套适合自己的学习计划,定期检查和回顾其实施情况。
3、学会取人之长,补己之短。在你的身边一定有一些学习较轻松,成绩又好的同学,多向他们学习好的学习方法。要做的一项具体的工作时,准备一个"好题本",随时收录一些解题的好方法,以及自己曾做错的习题改正。几年下来你会发现,你的学习会有飞速的提高,你的解题思路也被有效的打开了,更可贵的事,到中考前,你可以拿出来有针对性的复习,对你来说,只有"它"才是最有针对性的!这样岂不是事半而功倍。
时光如水,岁月如梭。转眼间,一个学期已经结束了,回顾一学期来,我在数学方面取得了很大的进步,现将取得进步的原因总结如下:
一、培养对数学的兴趣
孔子曰:“知之者不入好之者,好知者不如乐之者。”这句话说得是非常有道理的,它深刻地阐释了兴趣对学习的重要性。刚开始,我先硬着头皮学数学,并投以很大的热情,争取做的好一些,慢慢地,我的做法得到了老师和同学们的夸奖和鼓励,自然我也就更愿意做了,就这样,兴趣培养起来了。也善于思考了,
数学成绩也提高了不少。
二、有持之以恒的精神,保证计划落实到位
自数学计划制定之日起,我就严格要求自己按照以上计划执行,不给自己打折扣,每天的任务保证完成。不给自己找种种借口拖延计划的完成,要求自己必须今日事今日做。我经常告诫自己“任务不能积累,因为明天又有新的任务在等待着你”。就这样,凭着持之以恒的精神和坚持不屑的努力,我每天都做到课前预习,课下复习的好习惯,这对我的数学提高有了很大的帮助。
三、加大练习力度
要想学好数学,多做题时难免的。刚开始我从最基础的题入手,以课本上的习题为准,反复练习打好基础,然后,再找一些课外习题,帮助自己开拓思路,提高自己分析、解决问题的能力,掌握一些解题规律。对于易错、常错的题,我都把他们记录到纠错本上,加强记忆。再有,每次做题时,我都让自己高度集中,能够进入状态,做题时我要求自己将步骤写完整,认真、仔细,以免这些错误造成考试时的失分。
以上是我在学习数学上的一些做法,尽管如此,我在数学中还存在许多不足,如缺乏耐心、不能很好的举一反三等。这些是我以后在学习数学中需要改进的地方,在今后的学习中,我一定克服以上不足,使自己的数学成绩更上一层楼。
一、基本情况
高一计算机1323班共有学生55人,其中男生42人,女生13人。高一新生刚进入高中,学习环境新,好奇心强.但是普遍学习习惯不好,数学基础较差,学习兴趣不浓.所以工作的重心在于提高学生对数学科的兴趣,以及在补足初中知识漏洞的前提下,进一步的夯实学生基础.
二、指导思想
全面提高学生的科学文化素养,围着课堂教学这个中心,更新教育观念,进一步提高教学水平,培养学生分析问题解决问题的能力,同时扎扎实实抓好基础知识,注意学生习惯的培养,为三年后高考打下坚实的基础。
三、工作任务和措施
任务:基础模块第一章至第四章
第一章集合(9月份)
第二章不等式(10月份)
第三章函数(11月份)
第四章指数函数与对数函数(12月份-1月份)
四、措施:
1.夯实“三基”
知识、技能和能力三者关系是互相依存、互相促进的整体,能力是在知识的教学和技能的培训中形成的,通过数学思想的形成和数学方法的掌握,能力才得到培养和发展,同时,能力的提高又会对知识的理解和掌握起促进作用。
因此,在教学中应注意:
A.教学面向全体学生。
B.重视概念的归纳、规律的总结、技能的训练。
C.重视知识的产生、发展过程。
D.加强知识过关检测,做好查漏补缺工作。
2.优化课堂教学结构
A.精心设计课堂教学:
B.课堂练习典型化;
C.教学语言精练化
D.板书规范化。
3.加强学习方法指导:
A.指导学生看书,培养学生主动学习的习惯。
B.指导学生整理知识,总结解题规律,归纳典型例题解法及一题多解与多题一解。
4.加强学风建设与学习习惯的培养,适当安排作业,认真检查督促,加强优生和后进生的辅导,对学生的作业尽量做到面批。
五、各章节授课具体时间安排:
(基础模块第一章集合(约12课时)
(1理解集合、元素及其关系,掌握集合的表示法。)
(2掌握集合之间的关系(子集、真子集、相等。)
(3理解集合的运算(交、并、补。)
在新的学期里,我要百尺竿头,更进一步。
一、如何学习:
1、要力争把老师课堂上讲的知识全部掌握消化。上课的时候认真听讲,不做小动作,不和同学交头接耳;对于疑难问题,要敢于问为什么,先举手,后发言,虚心向老师和同学请教。
2、要认真完成老师布置的所有作业,做到一丝不苟。课堂作业当堂完成,课后作业和家庭作业也要按时独立完成。做作业时必须认真审题,弄清题目的意思,做题要认真仔细,不粗心大意,做完后还要认真检查,争取做的又快又好。
3、要做好课前预习和课后复习。每天预习第二天将要学习的内容,对于不理解和不会的地方,要先把它在书上划下来或记下来,第二天上课时带着问题去听讲,还可以在课堂上向老师请教。课余时间及时复习以前学过的知识,做到深入心中,植入脑中,加强记忆。
4、要利用星期天和节假日,挤出时间,继续深入学习奥数等提高题。多读课外书,做到举一反三,理论联系实际,不断丰富自己的知识。
5、要认真对待每次考试,尤其是期中考和期末考。在每次考试中都能把自己会的题全部做对,要留出时间进行检查和纠错。决不作弊,以此来考出高分。
二、家长配合:
家长每天要检查作业,做到有错就改,完成情况要签好字;及时与老师进行电话或文字交流,必要时要与老师面谈;让孩子走进自然,进入社会,在生活中进行所学知识的合理准确应用,以此和老师一同来提高孩子的成绩。
三、预期成绩:
本学期依然要保证数学成绩排在全班前十名内,力争进入前五名里,预期成绩在95分以上。
这就是我的学习计划。总而言之,在新的学期里我要更加努力, 持之以恒,考出优异的成绩来回报老师和家长,当一个各方面都很出色的好学生。
家长签字:
联系电话:
新一学期又到了,上学期虽然没什么好成绩,数学93,语文94.5,但也评到一个三好学生,我没什么优点,只有老实,诚实。然而缺点一大堆,如:不爱看书,不认真听讲,胆小怕事,爱睡觉……,就是因为这些,我才会成绩下降。我非常害怕我会被父母责骂,被朋友无视我的存在。
所以我一定要在六年级阶段拼搏,我会努力地请父母支持我!我的计划如下:
1、老师上课认真听。
2、课堂作业按时按刻去完成。
3、家庭作业要认真,不忘记。
4、不懂问题下课问。
5、计算题要认真仔细。
6、作业字迹要工整。
7、数学书要先预习,上课听的更懂。
8、数学争取好成绩。
9、配合老师要机急。
10、作业不会勤思考,实在不行问老师。
做到以上这十点,成绩优先一定行!
我一定努力学习,新学期加油!
再好的计划也会付之东流。所以,在新学期里,最要学会的就是要合理安排学习、娱乐、休息的时间,要把每一点一滴宝贵的时间都抓紧。
在这新学期来临之际,新年的钟声渐渐消逝,我们也从过节的快乐中走出,投入到紧张的学习生活之中,因此制定这个学习计划。
首先,应该先纠正自己的学习态度。“态度决定一切!”心态是取得成功的一个非常关键的环节,拥有好的心态,就会拥有好的成绩!
在这学期里,要加强自己不擅长的科目,在语文上,除了把课文中的内容、知识掌握好以外,还应多读一些课外书,如名人名著等。还要再想些办法提高自己的阅读、写作能力,不能只想课内不管课外了。“好记性不如烂笔头。”记好每一次的笔记,认真对待每一次的习作练习,只有基础扎实了,才可以累计更多。
数学,不能只明白课本上的习题应怎么做就够了,如果要学好它,就必须在课外再花一些时间来钻研和多做一些练习。上课仔细听讲,弄懂每一个问题,作业及时完成,追求质量和速度,回家做好预习、复习工作。早晚多听读外语,多积累一些单词,提高英语各方面的水平。从良好的基础上向着更高的目标出发。
上课认真听讲,课后及时复习巩固。理科最重要的就是多练笔,在完成学校布置的作业的前提下,要学会自己找习题来做。针对基础不好的同学就要从基础入手,在把基础题弄熟悉的情况下,逐步开始攻克难题,多多开动脑筋,遇到实在解决不了的可以建议看看答案的解析,这个也看不懂的就要善于去向学习好的同学请教。在弄清一道题后不要急于去做下一题,一定要再做一遍确保自己下次遇到类似的问题一定能得心应手。最关键是还是多多见识各种题型,只要你坚持相信数学成绩一定会提高的。我自己就是一个例子,以上是我的学习作息,我的数学成绩从一开始勉强及格到现在100多分,相信你也可以的。特别是向我们高中的,数学一定要多多注意,才能拿高分。加油吧。
一年之计在于春,一年之计在于晨。为了你学习成绩的提高,在新学期初,就要制定好这个学期的学习计划。那么该怎么制定学习计划才易于实施呢?下面给你几个建议: 1.学习计划主要是计划对空余时间的利用。这个时间一般规定两件事:补课和提高。 2.列出具体任务,然后把学习任务具体分配到每一周、每一天去,再计算一下,每天可以有多少学习时间,每项内容大致需要花费多少时间。计划中一定要安排严格的、足够数量的基本功训练,力戒好高骛远。 3.检查效果,及时调整:每个计划执行到结束或执行一个阶段后,就应当检查一下效果如何。如果效果不好,就要找原因,进行必要的调整。检查内容是:是不是基本按计划去做?计划任务是否完成?学习效果如何?没完成计划的原因是什么?什么地方安排太紧?哪些环节安排轻松?等等。通过检查后,再修订计划,改变不科学、不合理的地方。 4.不要贪心,要注意留出空余时间。一张一弛,文武之道,计划制定时,也要考虑吃饭、睡觉、休息、娱乐、体育锻炼等活动时间。