高一数学下学期重点知识和公式总结(通用3篇)
本学期我们高一数学组在学校领导和年级组领导的带领下,认真贯彻落实课改精神,以教法探索为重点,努力创建“高效课堂”。在敬业奉献中圆满完成了一学期的工作,现将本学期开展主要活动的情况进行总结:
一、我们是一个团结奋进的集体,各位老师都能发扬吃苦耐劳敬业奉献的精神,发扬自己在教学中的优势,勇于创新,善于学习,互帮互助。
二、每周四下午开展高效学科组活动,全体组员齐参与。
(1)“数学概念教学”的研讨:
高一新生在“函数概念”的学习上带着恐惧的心理,想学好又怕学不好,因此,我们以这个为开头,对“概念的形成”、“概念的同化”经行了系统的研讨,并且对合适某个类型的'课程,让各位教师试着用“概念形成”或者“概念同化”的模式行进教学,并且鼓励各位老师互相听课学习,撰写相应的教学设计,取得了良好的效果。
(2)“如何进行有效的课堂提问”的研讨:
不论是刚上课的青年教师,还是有很多年教学经验的老教师,在教学中都面临一个很重要的问题,那就是“如何进行有效的课堂提问”,就这个问题,我们专门利用学科组活动,学习了“桑德斯依据布鲁姆的认知过程提出问题分类体系:知识型问题,理解型问题,运用型问题,分析型问题,综合型问题,评价型问题”。同时,每个老师就自己在教学中遇到的问题如何设问,如何评价经行了交流。大家都更深刻的了解了有效提问的重要性和必要性。
(3)对“如何写教学反思”进行了研讨。
撰写教学反思是每个教师成长过程中最重要的一项“作业”,但是,如何去写教学反思,却不是每个老师都清楚什么是教学反思,怎么写教学反思,如何写教学反思才能提高自己的业务水平而不是流于形式。
(4)本学期学科组每一位老师都上一节公开课,老师们能在备课、观课、议课、评课等环节求真务实,不断锤炼教学技艺,提高老师们教学水平。
(5)认真落实课题研究。
三、工作中的问题:
在工作中我们还有很多共同的问题:内容多与课时数有限的矛盾;教学中教与学环节上的衔接,周四教研活动质量等等,都是有待于我们进一步解决的问题。
一、三角平方关系:
sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα倒数关系:tanαcotα=1sinαcscα=1cosαsecα=1商的关系:
sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,[1]三角函数恒等变形公式两角和与差的三角函数:
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α±β)=sinαcosβ±cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)辅助角公式:
Asinα+Bcosα=(A+B)^(1/2)sin(α+t),其中sint=B/(A+B)^(1/2)cost=A/(A+B)^(1/2)tant=B/A
Asinα-Bcosα=(A+B)^(1/2)cos(α-t),tant=A/B倍角公式:sin(2α)=2sinαcosα=2/(tanα+cotα)
cos(2α)=cos(α)-sin(α)=2cos(α)-1=1-2sin(α)tan(2α)=2tanα/[1-tan(α)]半角公式:
sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降幂公式
sin(α)=(1-cos(2α))/2=versin(2α)/2cos(α)=(1+cos(2α))/2=covers(2α)/2tan(α)=(1-cos(2α))/(1+cos(2α))万能公式:
sinα=2tan(α/2)/[1+tan(α/2)]cosα=[1-tan(α/2)]/[1+tan(α/2)]tanα=2tan(α/2)/[1-tan(α/2)]推导公式
tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cosα1-cos2α=2sinα
1+sinα=(sinα/2+cosα/2)诱导公式公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:
任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)
正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R.(其中R为外接圆的半径)
余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bccosA
角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边斜边与邻边夹角asin=y/r
无论y>x或y≤x
无论a多大多小可以任意大小正弦的最大值为1最小值为-1
三角恒等式
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC证明:
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得
tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ向量计算
设a=(x,y),b=(x",y")。
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。AB+BC=AC。
a+b=(x+x",y+y")。a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0AB-AC=CB.即“共同起点,指向被减”a=(x,y)b=(x",y")则a-b=(x-x",y-y").
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且λa=λa。当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当λ>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的λ倍;当λ<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的λ倍。
数与向量的乘法满足下面的运算律结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积
定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-ab。向量的数量积的坐标表示:ab="+yy"。向量的数量积的运算率ab=ba(交换率);(a+b)c=ac+bc(分配率);向量的数量积的性质aa=|a|的平方。a⊥b〈=〉ab=0。|ab|≤|a||b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。2、向量的数量积不满足消去律,即:由ab=ac(a≠0),推不出b=c。3、|ab|≠|a||b|
4、由|a|=|b|,推不出a=b或a=-b。
第一章集合与函数概念
一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.第一章集合与函数概念一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性;2.元素的互异性;3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特性使集合本身具有了确定性和整体性。3、集合的表示:如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}
1.用拉丁字母表示集合:A={我校的篮球队员}B={12345}2.集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N
正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分类:
1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-11}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。A?A
②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)
③如果A?BB?C那么A?C④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=AA∪φ=AA∪B=B∪A.4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2+4+6+8+10+12+14++(2n)=n(n+1)
12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/613+23+33+43+53+63+n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式
b2-4ac=0注:方程有两个相等的'实根b2-4ac>0注:方程有两个不等的实根b2-4ac
1.2.2、函数的表示法
1、函数的三种表示方法:解析法、图象法、列表法.1.3.1、单调性与最大(小)值1、注意函数单调性证明的一般格式:
1.3.2、奇偶性
1、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.
2、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.