2024年初中数学规范性培训总结(精选34篇)

2024年初中数学规范性培训总结(精选34篇)

2024年初中数学规范性培训总结 篇1

转眼的时间,我在教师的岗位上又走过了半年。追忆往昔,展望未来,为了更好的总结经验教训无愧于“合格的人民教师”这一称号,我现将20xx-20xx年度第一学期工作情况总结如下:

一、师德方面:加强修养,塑造师德

我始终认为作为一名教师应把“师德”放在一个重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”,这个道理古今皆然。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生,都是一个个大写的“人”。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,课余时间我阅读了大量的书籍,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。

二、教学方面:虚心求教,强化自我

担任七年级两个班的数学教学的工作任务是艰巨的,在实际工作中,那就得实干加巧干初中数学教师工作总结20xx-范文大全初中数学教师工作总结20xx-范文大全。对于一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。随着岁月的流逝,伴着我教学天数的增加,我越来越感到我知识的匮乏,经验的缺少。面对讲台下那一双双渴望的眼睛,每次上课我都感到自己责任之重大。为了尽快充实自己,使自己教学水平有一个质的飞跃,我从以下几个方面对自身进行了强化。

首先是从教学理论和教学知识上。我借阅大量有关教学理论和教学方法的书籍,对于里面各种教学理论和教学方法尽量做到博采众家之长为己所用!。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。

其次是从教学经验上。由于自己教学经验有限,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。我个人应付和处理课堂各式各样问题的能力大大增强。

最后我做到“不耻下问” 教学互长。从另一个角度来说,学生也是老师的。由于学生接受新知识快,接受信息多,因此我从和他们的交流中亦能丰富我的教学知识。

为了不辜负领导的信任和同学的希望,我决心尽我最大所能去提高自身水平,争取较出色的完成教学。为此,我一方面下苦功完善自身知识体系,打牢基础知识,使自己能够比较自如的进行教学;另一方面,继续向其他教师学习,抽出业余时间向具有丰富教学经验的老师学习。对待课程,虚心听取他们意见,备好每一节课;仔细听课,认真学习他们上课的安排和技巧。这半年来,通过认真学习教学理论,刻苦钻研教学,虚心向老教师学习,我自己感到在教学方面有了较大的提高。学生的成绩也证实了这一点,我教的班级在历次考试当中都取的了较好的成绩,。

三、 考勤纪律方面

我严格遵守学校的各项规章制度,不迟到、不早退、有事主动请假。在工作中,尊敬领导、团结同事,能正确处理好与领导同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,毫不松懈地培养自己的综合素质和能力。

我担任的两个班级的数学教学工作取得了一定的成绩,我将继续努力,取得更优异的教学成绩,为学校争光!

2024年初中数学规范性培训总结 篇2

一、工作目标:

开学初,根据学校的工作计划,结合本组的特点,经过全组教师的讨论,确定了工作目标和具体措施,明确树立集体质量意识,信息资源共享,把校本研修活动和教学实践结合起来,工作要点有:(1)组织教师认真学习教育理论,提高教师的理论素质。(2)抓好本学科各项教学基础工作,从整体优化出发,加强教学工作的五个环节(备课、上课、作业、辅导、考查)的管理,提高课堂教学效率。(3)积极开展教学科研,用教育科学指导教学。(4)组织公开教学,开展听课和评课活动。(5)关心培养青年教师,使之早日成为教学骨干。各备课组长在优化过程、减轻负担、提高质量的前提下,提出本学期的工作重点。初一抓好起始阶段数学学习习惯的养成;初二抓好“平几”基础教学,培养数学素质;初三多角度训练学生的思维品质,提高数学解题能力。围绕目标,教研组有计划,有内容积极展开工作。

二、组风建设:

我们初中数学组每位教师有富有强烈的事业心和责任感,严谨治学,七年级的两位教师为了抓好起始年级学生的思想品质,提高数学成绩,培养良好习惯,他们新老结对,集体备课,老教师无私奉献,新教师虚心好学,集思广益,通力合作。组内两位教师上汇报课,全体教师都能当好参谋,提出建议;初二年级班级大,学生多,课程难,他们辅导学生非常耐心,遇到问题总是共同探讨,经常互相交流,取长补短,激发学生学习兴趣,挖掘非智力因素,努力缩小落后面,教学效果较好;初三毕业班的教师惜时如金,分秒必争,他们经常一起研究提高数学复习课教学质量的方法和措施。每位教师都十分注重自我提高,不断给自己加压,以便更好地从事教学工作,在进行繁重的教学工作的同时,个别教师还潜心研究,自觉反思。不断地总结与提高,教研风气浓厚。数学组形成了一个团结勤奋,锐意进取的集体,充分体现了教研组的整体能力。

三、做好常规检查,强化教学管理

在鼓励教师们创造性工作的同时,不放松对教学常规的指导和监督。本学期,教研组配合教务处共进行两次教学常规工作检查,内容包括是否写教案,是否写教学反思和教后记,作业批改是否及时,认真等方面,检查结果令人满意。

四、 开展及参加校本研修活动情况

坚持每周进行研修活动,每次活动事先都经过精心准备,定内容、定时间、讲实效,多次组织学习教育理论和本学科的教学经验,充实教师的现代教育理论和学科知识。

1、开学初,我们积极准备小课题的校级结题工作。《合作互助 激发情感型学困生的数学学习兴趣》的个案研究自州级课题立项以来,参与本课题的几位老师做了大量工作,为这次校级结题做好了充分准备,从而在学校顺利结题,并拿到了结题证书。

2、在准备小课题结题的同时,我们数学组的老师又在为新一轮的小课题立项做前期准备。在这期间,先在组内进行讨论、分析,针对自己在教学中存在的普遍问题进行论证,然后确立课题,本学期我们的研究课题是《数学课堂练习优选活用的有效性研究》。参与课题的老师结合这一课题,查阅资料,上网搜寻,进行理论学习。然后制定研修计划,研修方案等,做好一系列课题研究的'相关工作。

3、因为《合作互助 激发情感型学困生的数学学习兴趣》的个案研究是昌吉州立项课题,所以在三月下旬又准备州级结题工作,整理资料,完善结题报告,上报材料。组内老师也希望这一课题能在昌吉州结题。

4、三月份,数学组四位老师又参加了县教研室组织的教师技能大赛,参赛教师有唐伟华、崔圆新、张桂荣、马海燕。参赛项目有说课、评课、板书设计三项。其中唐伟华、崔圆新分别获得说课与板书设计的二等奖,张桂荣、马海燕分别获得说课与评课的三等奖。

5、四月结合小课题研究开展了两次研修活动。一是八年级数学四课活动,由马春丽、杨天慧、米存三位老师承担主讲。他们根据活动内容提前做好准备,备课、说课、上课、听评课,本次四课活动的主题是如何优选课堂练习,从而使练习更有效。通过活动,马春丽、米存两位老师在上课时的主题鲜明,针对性强,能紧扣课题体现课题研究的主体性。第二次是小课题研究的阶段性反思,就这一课题的研究前一阶段的工作进行总结反思,然后提出修改、完善的建议或意见,为下一阶段的研究做好铺垫工作。

6、五月份的两次研修活动分别是小课题研究案例分析与九年级数学同课异构活动。案例分析主要针对自己在前期课题实施过程中遇到的问题或课堂实践事件进行分析、交流。这次活动有一定的效果。九年级数学同课异构有九年级的三位老师承担,他们都做了充分的准备,同样是一节二次函数的专题复习课,可三位老师因为不同的构思,上出了不同的风格,尤其能够凸显小课题的主体研究内容。所设计的练习具有一定的代表性,尤其对即将中考的学生来说,非常有效,无论是基础性、典型性、灵活性、开放性、综合性、技巧性都能融在一起,这样及训练学生的逻辑思维,又能训练学生的发散思维。何玲与马海燕老师尤其在学生学习方法与解题方法方面给学生的指导是非常的细心、到位。这些题目的训练使学生在解题过程中能够做到融会贯通,触类旁通的效果。

7、最后的两次活动分别是数学教师说课交流与小课题研究总结。对于说课,咱们老师不是很熟悉,说课可分为课前说可与课后说课,这两者是有明显不同的,对公开课严格把关,要求每一节公开课前都经过备课组的老师多次的研究和修改,每堂公开课后,全组的老师都进行认真的评课,我们组的老师对评课向来非常认真,从不避丑,不走过场,不管你的资格有多老,你有多年轻,大家能本着对事不对人的原则,对有研究性的问题、有争议的问题都能畅所欲言,尽管有时争论的很激烈,但道理是越辩越明的,组内课题研究教研课六次,每位教师听棵都在10节以上,大家通过争议都很有收获,以此推动本组的教研氛围。尽管日常教育教学工作十分繁忙,但老师们仍十分重视教育科研,积极参加学校组织的各类教育教学活动。

五、将培优补差工作落实到了实处

本学期,我组各位老师更是兢兢业业,认真负责,每天都有老师在进行补差和培优,力争使不同程度的学生得到了不同的进步和发展;各位老师,目的是使一些基础较好,但学习不扎实又很粗心的学生能在学习考试中发挥出自己真实的水平;补差计划:根据我校班制的特点,我们的补差工作每天都在抓,不仅给他们补文化课,最主要的是转变他们的学习态度,卸掉他们思想上的包袱,使他们能够轻松,自觉的学习,真正达到补课的效果。

六、教研组建设的设想:

1、新课标与教育理论的学习与钻研还要加强;

2、课堂教学设计、研究、效果方面还要深入研究;

3、全组走出去听课;

4、“培优、辅中、稳差”的方法方式还有待完善;

5、青年教师多上公开课。

时光的脚步带领我们走过了一个充实而忙碌的学期。总结过去,展望未来,我们清醒地认识到身上肩负的重任,探索之路任重而道远,我们只有不断学习,不断地开拓进取,迎接更大的挑战。

2024年初中数学规范性培训总结 篇3

1、正数和负数的有关概念

(1)正数:比0大的数叫做正数;

负数:比0小的数叫做负数;

0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

2、有理数的概念及分类

3、有关数轴

(1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

(2)相反数:符号不同、绝对值相等的两个数互为相反数。

若a、b互为相反数,则a+b=0;

相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

(3)绝对值最小的数是0;绝对值是本身的数是非负数。

4、任何数的绝对值是非负数。

最小的正整数是1,最大的负整数是-1。

5、利用绝对值比较大小

两个正数比较:绝对值大的那个数大;

两个负数比较:先算出它们的绝对值,绝对值大的反而小。

6、有理数加法

(1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和.

(2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零.

(3)一个数同零相加,仍得这个数.

加法的交换律:a+b=b+a

加法的结合律:(a+b)+c=a+(b+c)

7、有理数减法:减去一个数,等于加上这个数的相反数。

8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12-25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和.”

9、有理数的乘法

两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

第一步:确定积的符号第二步:绝对值相乘

10、乘积的符号的确定

几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

11、倒数:乘积为1的两个数互为倒数,0没有倒数。

正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

倒数是本身的只有1和-1。

2024年初中数学规范性培训总结 篇4

①直线和圆无公共点,称相离。AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。(d为圆心到直线的距离)

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的方程

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

当x=-C/Ax2时,直线与圆相离;

2024年初中数学规范性培训总结 篇5

通过培训的学习,使我认识到当前课改的目的和意义,也使自己对课改有了深刻的认识,也大大提高了自己对本学科的理论素养。现将这次培训体会总结如下:

一、业务学习

加强学习,提高思想认识,树立新的理念。坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。

二、新课改

通过学习新的《课程标准》,使自己逐步领会到“一切为了人的发展”的教学理念。树立

了学生主体观,贯彻了民主教学的思想,构建了一种民主和谐平等的新型师生关系,使尊重学生人格,尊重学生观点,承认学生个性差异,积极创造和提供满足不同学生学习成长条件的理念落到实处。将学生的发展作为教学活动的出发点和归宿。重视了学生独立性,自主性的培养与发挥,收到了良好的效果。

三、教学研究

教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的.教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在:

(一)发挥教师为主导的作用

1 、备课深入细致。平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。

2 、注重课堂教学效果。针对初三年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。

3 、坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。经常向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,自己执教二节公开课,尤其本学期,自己执教的公开课,学校领导和教师们给我提出了不少宝贵的建议,使我明确了今后讲课的方向和以后数学课该怎么教和怎么讲。

4 、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。

四、工作中存在的问题

1 、教材挖掘不深入。

2 、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3 、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导。

4 、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。 5 、教学反思不够。

五、今后努力的方向

1 、加强学习,学习新课标下新的教学思想。

2 、学习新课标,挖掘教材,进一步把握知识点和考点。

3 、多听课,学习同科目教师先进的教学方法的教学理念。

4 、加强转差培优力度。

5 、加强教学反思,加大教学投入。

2024年初中数学规范性培训总结 篇6

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

2024年初中数学规范性培训总结 篇7

基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。

质数

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。

算术基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。

概念

只有1和它本身两个约数的自然数,叫质数(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的约数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个约数外,还有其它约数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的约数除了1和它本身4这两个约数以外,还有约数2,所以4是合数。)

100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。

注:1既不是质数也不是合数。因为它的约数有且只有1这一个约数。

2024年初中数学规范性培训总结 篇8

时间单位换算

1世纪=100年1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天,闰年2月29天

平年全年365天,闰年全年366天

1日=24小时1时=60分

1分=60秒1时=3600秒

重量单位换算

1吨=1000千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

长度单位换算

1千米=1000米1米=10分米

1分米=10厘米1米=100厘米

1厘米=10毫米

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者和-小数=大数)

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣0注:方程有两个不等的实根

b2-4ac抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=c*h斜棱柱侧面积S=c"*h

正棱锥侧面积S=1/2c*h"正棱台侧面积S=1/2(c+c")h"圆台侧面积S=1/2(c+c")l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S"L注:其中,S"是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h

扩展阅读:

2024年初中数学规范性培训总结 篇9

在授课这一阶段应该好好分析学习情况,这是学生学习的进步以及养成很好素养的当务之急,在初中的数学授课中应该具体到每一位学生,弄清楚她们的行为、爱好、想法以及个人思想这一系列的东西对促进教育有重要影响。

尽管当下大多数老师都明白学习情况的掌握十分关键,可再进一步的行动中却发现了很多困难。

1当下的初中数学学情分析态势

1.1分析方法科学性缺失通过样本调查,超过半数的教师通过谈话和提问的方式了解学生的兴趣爱好和知识水平,教师进行学情分析的方法比较单一,缺乏相应的科学合理性。教学是一个复杂的过程,我们应该综合运用各种方法,如问卷调查、谈话、前测、后测、练习等,准确把握学生的知识能力水平和学习效果。

1.2分析内容太泛化从调查来看,初中数学教师进行学情分析主要围绕以下两点进行:一是分析学生对将要学习的内容有无困难和兴趣,这是对学生学习需要的分析;二是分析学生的学习能力、班级的整体水平等,这是对学生学习准备的分析。如此的学情分析,没有结合具体教学内容和学生个体差异展开,内容粗糙,对教学并无实际指导意义。例如,一位教师这样进行学情分析:该班学生数学基础较好,有较强的学习欲望。这是对学生群体的心理和生理模糊特征的分析,并不是对本班学生具体知识水平和能力的分析,这样的学情分析比较空洞抽象,对改进教学帮助不大。

1.3学情分析的反馈工作没有落实学情分析应贯穿教学的全过程,但从调查结果来看,很多教师都只是孤立地把学情分析当作备课的环节之一,没有结合教学目标、教学重难点和作业练习来设计适应相应学情的教学环节,更没有根据学情分析的结果来进行后续的反馈与完善工作。例如,在分析“学习需要”时,很多教师在备课环节分析了学生在学习中可能会遇到的困难,却没有针对这些可能性设计帮助学生克服困难的具体措施。针对学情分析的现状,我认为,要能正确地进行学情分析、提高教学效率,必须明确两个问题。一是分析什么,这就要弄懂几个概念,包括“已知”、“未知”、“能知”、“怎么知”,“已知”指的是学生的知识经验和与学习内容相关的能力水平;“未知”包含将要学习的知识和已经学习过了但学生没有掌握的知识;“能知”就是指通过教学,学生能掌握什么知识;“怎么知”是如何学习到知识,包括学生的学习习惯和学习方法等。二应该通过多种方式进行学情分析,不仅需要根据自身的经验,同时还需要通过实际观察以及调查问卷等形式进行。

2利用学情分析更好地开展数学教学

2.1根据学情分析设定教学目标教学目标对教学有方向性的指导作用,它是教学的出发点也是归属点,学情分析是教学目标设定的基础,没有学情分析基础的教学目标是不科学的,科学的教学应通过分析学生的“已知”和“未知”来确定教学目标。例如,我在教学人教版七年级上册《正数和负数》这一章节时,先进行学情分析:学生已经学习过整数和分数(包括小数),对数的概念有了一定的了解,但是对生活中数的应用理解不深。根据对课前对学生学习情况的摸底调查,制定了本堂数学课的学习目标。一是复习上两堂课关于有理数的相关知识点;二是在正号和负号在数中代表的意义;三是介绍这些不同概念数的产生背景,让学生了解到数学的是人类改造自然的必然产物。这一教学目标不但重视问题解决的结果,而且重视问题解决的过程以及学生在问题解决过程中的体验等。

2.2根据学情分析增强学生学习主动性只有当孩子们对学习的知识十分喜欢时,就会出现内心的渴望与学习的理由,这样他们才会有完成目标的积极性,从“要我学”换成“我要学”。如“有趣的七巧板”是一节数学教学活动课,通过本节课可以进一步丰富七年级学生对平面图形中平行、垂直和角的有关内容的认识,培养学生探究问题的能力和独创精神。就学情而言,在学习本课之前,学生已经学习了几何的初步知识——线段、平行、垂直、角的概念,能够借助三角尺、量角器、方格纸等画线段、平行线、垂线、角。本节课的重点内容并不是绘制七巧板,而是借助七巧板来了解线段的位置关系,然后借助这套工具来设计和欣赏图案,培养学生的空间想象以及审美,让充满好奇心的初中生对七巧板的操作充满了求知欲,进而让他们对数学学科产生兴趣。2.3根据学情分析针对性开展教学“学习需要”和“学习准备”都是学情分析的重点内容,在上每一节新课之前,都要分析本班学生的整体学习能力和特殊群体的学习能力,并在教学中采取相应的措施。譬如人教版七年级下册第七章《三角形的高、中线与角平分线》涉及的定理、性质、公式较多,且所任教班级大部分学生平时上课都不够活跃。教学时笔者鼓励较为积极的学生上台讲解,教师退居倾听者和引导者的角色,让学生成为课堂的主角。这就促使上台讲解的同学必须先理清思路,组织语言;台下听讲的同学对这一新颖的方式感到新奇,促使他们认真听讲,积极思考,参与的热情高涨。这一变化不仅激发了讲课学生的积极性,也给听课的学生注入了一支强心剂,引起学生对数学的兴趣,提升课堂教学效果的同时,对于学生培养数学思维和锻炼语言表述能力也大有裨益。

3结语

总的来说,学情分析并不属于孤立形式,其实应是教师安排组织教学环节,从而使学生找到有益于自身发展的保证。正确的学情分析,教师不仅仅只注重学生的成绩,也应了解学生的学习热情、性格方面、兴趣点等,参考教学改革的理念,进一步增强教学质量。

2024年初中数学规范性培训总结 篇10

参加初中数学远程培训二个多月时间了,通过这段培训,我受益匪浅,感受很多。下面就是我的.点滴体会:

一.对新教材有了初步了解

学习了义务教育新课标的理念和课例解读后,我对于未曾变动的旧的知识点,考纲上有所变化的做到了心中有数。对于新增内容,哪些是中考必考内容,哪些是选讲内容,对于不同的内容应该分别讲解到什么程度,也更明确了。这样才能做到面对新教材中的新内容不急不躁、从容不迫,不至于面对新问题产生陌生感和紧张感。通过学习,使我清楚地认识到初中数学新课程的内容是由哪些模块组成的,各模块又是由哪些知识点组成的,以及各知识点之间又有怎样的联系与区别。专家们所提供的专业分析对我们理解教材,把握教材有着非常重要而又深远的意义。对于必修课程必须讲深讲透,对于部分选学内容,应视学校和学生的具体情况而定。

二.对课堂教学设计、教学案例的编写方面的内容有了提高。

培训活动中,自己通过视频观看学习了“案例导入”、“专家讲座”、“互动讨论”、“课例作业”等内容,使自己在教学设计、教学案例以及课堂教学等方面有了进一步的提升和加强,特别是在课堂教学设计,令人豁然开朗。通过视频观看学习了《有序数对》和《图形的旋转》,感觉很有收获。如以往听课从未记录过讲课者教学过程各个环节的时间分配,听课时只注意了讲课者的知识传授情况,而没注意欣赏、品析讲课者的教学追求、洞察其教学的理论依据等。特别是听了专家讲座后,自己才知道还有很多不足。自己今后将认真按专家的指点开展教学活动。

三、教学实战能力得到加强

本次培训充分关注培训教师的实际需要,不仅传授了现代教学技术和手段,在大的纬度上帮助教师构建理论体系,同时更关注新课程背景下课堂教学深层问题。专家向我们讲授了“计算机教学手段应用”“中学教师标准解读”“教学技术及应用”“新课标解读”等,先进的教学理念及其别具一格的教学风格使本人在观摩、思考、碰撞中得到提高。整个培训活动从实际到理论,再由理论到实际,循序渐进,降低了学习的难度,提高了学习的实效。

四、通过培训学习,使我清楚地认识到整体把握初中数学新课程的重要性及其常用方法。

整体把握初中数学新课程不仅可以使我们清楚地认识到初中数学的主要脉络,而且可以使我们站在更高层次上面对初中数学新课程。整体把握初中数学新课程不仅可以提高教师自身的素质,也有助于培养学生的数学素养。只有让学生具备良好的数学素养才能使他们更好地适应社会的发展与进步。与学生的总结、交流能促进我们产生更多更好的授课方式、方法,产生更多更新的科学思维模式。这对于我们提高课堂教学质量具有非常现实而深远的意义。

总之,此次培训活动,使自己的教育教学观念、教学行为方法、专业化水平,教育教学理论均有了很大的提升。今后,自己充分将所学、所悟、所感的内容应用到教学实践中去,做新时期的合格的初中数学教师。

2024年初中数学规范性培训总结 篇11

1、多项式

有有限个单项式的代数和组成的式子,叫做多项式。

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

单项式可以看作是多项式的特例

把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

2、多项式的值

任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

3、多项式的恒等

对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。

性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。

4、一元多项式的根

一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。

多项式的加、减法,乘法

1、多项式的加、减法

2、多项式的乘法

单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

3、多项式的乘法

多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

常用乘法公式

公式I平方差公式

a+ba—b=a^2—b^2

两个数的和与这两个数的差的积等于这两个数的平方差。

2024年初中数学规范性培训总结 篇12

教学之路仍在脚下延伸,作为教学之路上的蹉跎前行者,不求夏花之灿烂,但求秋叶之静美。在以后的工作中,我将保持自己的勤奋和执着,把自己的工作做的更好。 在中学任职以来,我本着以重实际、勤钻研、求实效的工作原则,以培养学生创新精神和实践能力为重点,以新课程改革为契机,优化教学常规,深化课堂教学改革,大力推行素质教育,求真、务实、创新、高效地工作着,现将教学工作总结如下:

一、一片冰心在玉壶——树立新的教育理念,坚定教书育人信念。

教育事业乃民族大业,振兴教育人人有责,素质教育和新课程改革对中学教育提出新的要求,学生成为教育的中心,爱成为教师职业道德的核心,也成为教书育人的根本途径,因此,我确立了“一切为了人的发展”的教育理念,明确了“用真挚的爱教育每一个学生”,用适合每个学生的方法教育学生的教学工作目标。

二、衣带渐宽终不悔——我的教学工作。

任职期间,我在坚持抓好新课程理念应用的同时,大胆改革课堂教学,探索新的教学方法,具体表现在:

1、进一步优化教学常规,充分发挥老师的主导作用。围绕着“什么是有效的历史教学?怎样才能提高课堂教学的有效性?”这一问题,我作了认真思考和分析,明确了教学思路和重点,一是在备课上下功夫,为此,我继续钻研和解读新课程标准、考纲和新教材,继续分析、了解学情,关注学生的知识基础、思想动态,备课做到知识点准确全面,知识体系简明科学,授课方式艺术多变,感染力强,使课堂教学集知识性、艺术性、思想性于一体,从而激发了学生的学习兴趣,有效调动了学生的学习积极性,大大提高了课堂效率。二是在巩固训练上设底线。即精心设计课后作业和单元检测,定时定量训练,全批全改,然后通过讲评使学生不仅查缺补漏,明确了知识,而且掌握了高质量完成试卷的技巧和方法,提高了解决问题的能力。

2、调动学生积极性,突出学生的主体地位。如何突出学生的主体地位?我从调动学生的学习积极性入手,因为积极性提高了,学生才会真正投入到学习中来,做到自主学习与合作探究,才会主动发现问题和解决问题。为此,在备课时,考虑学生的知识储备和兴趣点,设计出激发学生兴趣和激活学生思维的问题;课堂上与学生建立平等、民主的学伴关系,给自己的教学风格定位为亲切、风趣、激情、广博,这就是采取多鼓励、少批评的评

2024年初中数学规范性培训总结 篇13

1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质:⑴矩形具有平行四边形的一切性质;

⑵菱形的四条边都相等;

⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

⑷菱形是轴对称图形。

提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)

5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

6、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

7、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。

8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

9、中被开方数的取值范围:被开方数a≥0

10、平方根性质:①一个正数的平方根有两个,它们互为相反数。②0的平方根是它本身0。③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。

12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0

13、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

14、求正数a的算术平方根的方法;

完全平方数类型:①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。

求正数a的算术平方根,只需找出平方后等于a的正数。

2024年初中数学规范性培训总结 篇14

一直以来,在试卷讲评课的上法上总存在着一些困惑。例如,试卷上的错题因人而异,如何上能照顾到全体,将每位学生出错的问题解决?通过这次培训我认识到,我们没有足够的时间面面俱到的讲解,在一定的时间内想面面俱到,那么每个题目也只是蜻蜓点水,一节课下来真正沉淀到头脑中的知识寥寥无几。今后的试卷讲评课我打算按照下面的思路来上,请刘老师多批评指正。

一、考试之后教师要做好测试分析,并充分备课。

通过测试分析,首先,弄清学生集中出错的题目,找出学生的共性问题,并针对这些共性的问题展开备课。备课要备学生出错的原因,试卷讲评时如何对这些问题讲解与完善。其次,弄清每位学生的得分,对于成绩波动大的同学通过谈话等方式及时了解情况并帮助解决困难。

二、下发试卷,学生自己纠错。

给学生自己纠错的机会,将能自己改正或通过小组合作改正的题目在试卷讲评前改过来。

三、订正答案,进一步改错。

给学生标准答案,在答案的引导下,学生进一步寻找解题思路,完善解题步骤,查找丢分原因,加深对知识的理解。

四、重点题、错题重点讲解。

经过两轮的改错之后学生存留下的问题已经很少,教师试卷讲评时就要解决这些遗留问题、重点题、错题。对于这些问题可以通过分类讲解、同类知识串讲、变式训练、一题多解、多个知识点上串下联等方式讲透。经过寻根问底,可使学生对不明确的知识点加深理解,再认识,然后巩固练习。这个过程下来同时可复习到多个知识点,建立知识体系,拓展学生思维。

五、方法总结。

围绕一个知识点讲解之后,要让学生总结解题思想、方法,掌握答题技巧。需要时可让学生简记。

六、解答疑问。

通过学生提出疑问,大家共同解答,完善学生对知识的认识。

近几年教基础年级,所以感觉上章节复习课较多,专题复习课很少。我们学校的章节复习课与刘老师的“出示问题,引出知识”是一致的。通过问题的解决实现知识点的复习。

通过听两位韩老师的课我感觉有几处大的收获:

一、要想实现高效课堂,教师首先高效备课。从两位老师对题目的选取上能看到她们备课的用心。值得学习。

二、充分放手给学生,让学生思考、解决问题、总结方法。教师适时点拨。

三、重要知识点、思想、方法及时简记。“好脑子不如烂笔头”,的确如此。根据艾宾浩斯的遗忘规律,一节课下来学到的知识点总在慢慢遗忘,如果课堂上不把关键点记录下来的话,回过头来复习时头脑中的知识漏洞难以得到修缮。

通过这次学习我感觉收获很大,希望刘老师多组织类似活动帮助年轻教师成长。同时对于这次培训的肤浅认识希望刘老师多批评指正。谢谢!

2024年初中数学规范性培训总结 篇15

数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。近几年来,通过数学新课程改革的实行,给基础教育注入了生机和活力。但由于多方面的原因推行过程中暴露的问题也不少,笔者近几年来对我国数学教改的理论与实践作了多角度、全方位的思考和分析,发现在取得教改成果的同时,其中也出现了很多有必要提请教育界人士引起重视的问题,这些问题不从根本上加以解决,数学课改便难以走上正轨的出路。下面笔者对数学新课程改革中存在的问题及对策作一点简单的阐述。

一、数学教改的存在的问题

1、数学新课改精神落实不到位

目前通过数学新课标的学习,不少教师也重视新课改的指导定神,尽管也提到了思想教育和能力的提高,但大家的着眼点只在知识。能够落实的也只是知识目标。部分教师也许是因为“惯性”,也许是因为新的课程理念还未形成,在课堂教学中依然是从概念到概念,就知识讲知识,不能把知识与应用、知识与能力结合起来,只注重基础知识的教学,只注重落实知识性的目标,忽视《课程标准》规定的三维目标的落实。例如,在讲初一年级有理数运算时,由于只注重得出正确的结果,强调运算法则、运算顺序,而对生活中列举事例不够,更是对整体的运算律或简化运算注重不够,而把数学引入生活中更能对发展学生运算能力却更为重要。教材中是作为重点来处理,但(课程标准》上并没有规定这个知识点,故全书不出现结论。教材上这样安排着眼点在于学生的参与及过程的体验,是要让学生经历探究的过程,能够得出大致的正确结论即可。至于结论是否完整、表达是否严谨,并不是本节内容所强调的。而实际教学中,部分教师恰恰是只注意到概念与法则的教学上,只注重了知识的目标,而忽视了其实践教学。

2、忽视对学生自学能力和创造能力的培养

目前数学教改活动中的一个突出问题便是重视知识和解题技能的传授,而忽视了对学生自学能力的培养,这是一个极为令人担忧的现象,因为学生在校学习的知识毕竟是有限的,更多的知识则是学生在走向社会后通过自学来获得。所以教学活动中要重视教给学生获取知识的方法,叶圣陶先生的“教是为了不教”不仅仅只适用于语文教学。

由于受到升学率的冲击,在高、中考指挥棒的指挥下,迫于各种社会压力,目前教改实践中很多采用的是灌知识,讲题型,递游于题海,教改老师有口难言,学生疲惫不堪。对学生创造能力的'培养是一个长期被忽视了的问题。

3、教改过程中方向不明,缺乏创新或急于标新立异

很多教师对教改的认识不足,因此在教改问题上方向不明,对于教学、教研、教改问题上不能正确处理这三者的关系。此外,有些教师缺乏创新精神,不作深入思考,便将别人的教改经验盲目地加以移植,结果只能导致失败。

在教改问题上,有些教师由于理论知识不丰富,缺乏严谨的治学精神,急于标新立异,故弄炫虚,开口便是自己的“什么法”或“什么式”等。

4、部分学校教改过程不能坚持到底,易受外界左右

在教改过程中,有些教师在教改上付出了艰苦的劳动,并且取得了优异的成绩,正当他们准备大显身手的时候,却被上级委任了校长、主任之类的行政职务。这样经常外出开会、学习,忙于行政事务,在业务工作上用非所学,结果两败俱伤。

或者一旦取得一点成绩,便到这里作报告,那里介绍经验,最终使教改成为昙花一现。

以上便是在教改过程中容易出现的问题,要使教改达到预期的目的,有必要通过对以上问题作出分析以采取措施,使数学教改得以顺利进行,从而达到预期的目的。

二、面对数学教改出现的问题应采取的措施

要使教改能顺利地按计划地进行,达到预期的目的,必须寻求教改中出现的问题而采取解决的措施。依笔者之见:可以从如下几方面着手:

1、教师必须加强理论及业务的学习。

对教师而言,加强理论及业务学习的重要性是不言而喻的,理论的模糊必然导致实践的盲目,教学中的无效劳动主要是由于理论上的偏颇所致。

首先,教师要加强哲学的学习,教改过程中要以辩证的观点提出问题、分析问题和解决问题。

其次,教师要加强教育心理学的学习,要使教改取得成功,必须在教育科学理论的指导下才能得以进行,否则便不能使教改达到预期的目的。

在业务学习方面,教师要不断地加强本学科的学习,同时还应了解数学学科的最新发展与动向,这样才能与教材同步,与学生同步,与时代同步。

2、教师应加强对教学法的研讨

要使教改取得成功,教师必须熟悉各种数学教学法及其特点,并在教学中选择恰当的教学方法。目前各地教改在教法改革方面取得了很大的成绩,总结出了很多各具特色的教学方法。

3、教师必须端正思想,提高认识

教改是教育事业的百年大计,它需要教师付出的不仅仅是一年或几年的劳动,而应当是十几年、几十年甚至是终身的求索和奋斗,教师要有战胜困难的信心和勇气,知难而进。同时教师教改的方向要明确,目标宜具体:要通过教改实验使学生在较少的时间内最大限度地获取知识,促使学生的各项能力得以全面发展。

4、同科教师通力协作,联合攻关

个人的时间、精力和知识毕竟是有限的,要使教改活动能顺利地实施进行,同科教师要通力协作,充分发挥集体的智慧和力量,使全体教师能参加教改,联合攻关,有利于教改向纵向深入发展,这就必须杜绝和防止文人相轻,同行相嫉妒的不良现象,老教师不要以有较强的实践经验而自居,青年教师也不要因为有较高的理论知识而自傲。

5、教师讲解中要注重对学生推理能力的培养

新教材在九年级下册才正式引入证明,三段论式的演绎推理正式开始。因此,在初中阶段培养学生逻辑推理训练的时间太短,学生演绎推理能力达不到要求,这将给高中教学带来不利因素。三年实验结果也可证实这一现实。如我市某年数学毕业卷的压轴题是;△abc是⊙0的内接等边三角形,d为⊙0上的一点,ad与bc相交于e,连结bd,ae=4cm,ed=lcm。求:(1)∠d的度数;(2)ab的长。”该题应是一道较简单的题目,但评卷后的抽样统计结果是:该题得分率为28.6%。确实反映出学生的演绎推理能力薄弱。因此,在学生推理能力的培养上,我们提出以下建议:一是在八年级《四边形》一章开始,加强学生说理能力的培养;二是在搞好实验、合情说理的前提下,渗透演绎推理,三是将《证明》一章的教学提前;四是加强几何分析法的教学,提高学生演绎推理能力。

新的教学理念是:注重学生的发展,面向全体学生,培养学生对学科探究的兴趣

和热爱,教学中贴近生活、社会,密切联系实际,体现学习方式和师生关系的转变,突出学生主动参与,发展学生的探究乐趣。只要我们广大教师,对影响教改实验中的的问题引起重视、作了分析,我们离新课改的要求就会越来越近

2024年初中数学规范性培训总结 篇16

我们来自农村的教师得以与众多专家、学者面对面地座谈、交流,倾听他们对数学教学的理解,感悟他们的教育教学思想方法。这次培训内容丰富,安排合理,使学员们受益匪浅。

一、理论学习,飞的更高。

(一)专家讲座,思想理念的提升!

我们这次培训班名称是:“国培计划”——初中数学骨干教师培训班,班主任是易才凤老师,副班主任是刘咏梅和虞秀云老师,班主任助理是周玲芳和陈艳凤。本次培训,听了专家胡惠闵教授《基于学生经验的学习活动设计研究》等讲座14个,从师德、当前教育教学改革动向、教科研、课堂教学专题、教材解读、现代教育技术应用等多方面进行,各位知名专家、学者、特级教师从自己切身的经验体会出发,畅谈了他们对师德以及教学等教育教学各个领域的独特见解。让我们更清晰地意识到作为一个农村教师该如何看待自己所处的位置,该如何去提升自己的专业水平。在知识方面,我们深感知识学问浩如烟海,也深深地体会到教学相长的深刻内涵。教师要有精深的学科专业知识,广博的科学文化知识,丰富的教育和心理科学知识。知识结构要合理,当今的自然科学,社会科学和人文科学互相渗透,相互融合,只懂自己专业的知识是远远不够的,这一点我们在学习中体会很深。精深的专业知识是教师担任教学工作的基础。这就要求教师要扎实的掌握本学科的基础理论,基础知识以及相应的技能,并运用自如。熟悉本学科的学习方法和研究方法,同时还要具备一定的与本学科相关的知识。学员们在这次培训中发现自己专业知识还很欠缺。只有掌握全面的学科知识才能在教学过程中高屋建瓴的处理好教材,把握住教材的难点,才能有对教材内容深入浅出的讲解。从而保证教学流畅地进行,使学生既学到知识,又掌握学习方法和发展能力。

(二)学员论坛,思想交流的园地!

在理论培训阶段,为了提升每位学员自身的理论水平,安排了三次小组交流。在小组讨论中,学员们畅所欲言,许多提出的观点和问题,都是农村数学教学中的实际问题,引起全体学员的一致共鸣的同时,也得到专家们的重视,他们的回答也给了我们很好的启示,对于我们今后的教学有着积极的促进作用。对每一个专题进行总结,有了自己的看法,有了自己的思想,有些观点非常精髓,有独到的见解,我们有些学员开玩笑的说:“我们自己也有一些专家的天份!”。

(三)反思,理论水平提高的源泉!

这次培训要求每个学员每天都要做笔记,写反思学习日志,写心得体会,提出困惑。也为我们学习和交流提供了一平台。认识到继续教育的重要性,树立终身学习的目标,这次培训,就自身更新优化而言,使学员们树立了终身学习的思想。通过培训,感觉以前所学的知识太有限了,看问题的眼光也太肤浅了。教师只有树立“活到老,学到老”的终身教育思想,才能跟上时代前进和知识发展的步伐,才能胜任复杂而又富有创造性的教育工作。“问渠那得清如许,唯有源头活水来。”只有不断学习,不断充实自己的知识,不断更新自己的教育观念,不断否定自己,才能不断进步,拥有的知识才能像‘泉水”般沽沽涌出,而不只是可怜的“一桶水”了。

二、同行交流,取长补短!

本次培训,汇聚了全省各地的骨干教师,每位培训教师都有丰富的教学经验,教学的外部条件也非常相似,但也存在着许多的差异,为我们之间的相互交流提供了很好的一个交流平台。因此,成员之间的互动交流成为每位培训人员提高自己教学业务水平的一条捷径。在培训过程中,学员们在交流过程中,了解到各区县的新课程开展情况,并且注意到他们是如何处理新课程中遇到的种种困惑,以及他们对新课程教材的把握与处理。在培训中,我们不断地交流,真正做到彼此之间的相互促进,共同提高。

三、教学实践,飞得更远!

(一)教学实践,本身就是一种环境的体验。

在职研修自主学习安排三个月,12月18日开始,我们回到学校进行教学实践分散学习。通过教学策略的修正,对比教学,使我感触到自身课堂教学中最本源的东西,在教学中反思,在反思中成长。同时,在教学实践的过程中,积极参与学校的校本教研活动,经常听一些优秀教师讲课,学习他们规范的组织方式,感受他们浓厚的教研氛围,积极寻找差距所在,当然,也积极报名参加上公开课,接受自我反思和导师与同伴的诊断,使我对于校本教研有了更好的认识与把握。

(二)校本教研,诊断提高

在集体备课的前提下,采用“示范—诊断—提升”的实践模式:指定教师上示范课,其余教师观摩——我和同伴听课诊断——我指导教师进行诊断性说课、评课——我指导教师修改教案—指定教师上第二次课(提高课)、我和同伴听课——我指导教师进行教学反思和总结。通过实实在在的行为,加深教师对教学的理解,加深对课堂的掌控,加深对细节的把握,从而提高课堂教学艺术。

四个月的培训是短暂的,但是留给我的记忆与思考是永恒的,通过这次培训,使我提高了认识,理清了思路,找到了自身的不足之处以及与一名优秀教师的差距所在,对于今后如何更好的提高自己必将起到巨大的推动作用,我将以此为起点,让“差距”成为自身发展的原动力,不断梳理与反思自我,促使自己不断成长。

2024年初中数学规范性培训总结 篇17

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素

①结果必须是整式

②结果必须是积的形式

③结果是等式

④因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法

①系数是整数时取各项最大公约数。

②相同字母取最低次幂

③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。

②确定商式

③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

2024年初中数学规范性培训总结 篇18

三角函数关系

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;sinA=a/c

余弦(cos)等于邻边比斜边;cosA=b/c

正切(tan)等于对边比邻边;tanA=a/b

余切(cot)等于邻边比对边;cotA=b/a

正割(sec)等于斜边比邻边;secA=c/b

余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

中考数学知识点

1、反比例函数的概念

一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质

反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,y的取值范围是y0;

②当k>0时,函数图像的两个分支分别

在第一、三象限。在每个象限内,y随x 的增大而减小。

①x的取值范围是x0,y的取值范围是y0;

②当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,y随x 的增大而增大。

4、反比例函数解析式的确定

确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数的几何意义

设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则

(1)△OPA的面积.

(2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

矩形PCEF面积=,平行四边形PDEA面积=

2024年初中数学规范性培训总结 篇19

数轴

⒈数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的(小)数

⑴最小的自然数是0,无的自然数;

⑵最小的正整数是1,无的正整数;

⑶的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a0时,-a0(负数的相反数是正数)

当a=0时,-a=0,(0的相反数是0)

2024年初中数学规范性培训总结 篇20

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

14、两直线平行,同旁内角互补

15、定理三角形两边的和大于第三边

16、推论三角形两边的差小于第三边

17、三角形内角和定理三角形三个内角的和等于180°

18、推论1直角三角形的两个锐角互余

19、推论2三角形的一个外角等于和它不相邻的两个内角的和

20、推论3三角形的一个外角大于任何一个和它不相邻的内角

21、全等三角形的对应边、对应角相等

22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

25、边边边公理(SSS)有三边对应相等的两个三角形全等

26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

27、定理1在角的平分线上的点到这个角的两边的距离相等

28、定理2到一个角的两边的距离相同的点,在这个角的平分线上

29、角的平分线是到角的两边距离相等的所有点的集合

30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33、推论3等边三角形的各角都相等,并且每一个角都等于60°

34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35、推论1三个角都相等的三角形是等边三角形

36、推论2有一个角等于60°的等腰三角形是等边三角形

37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38、直角三角形斜边上的中线等于斜边上的一半

39、定理线段垂直平分线上的点和这条线段两个端点的距离相等

40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42、定理1关于某条直线对称的'两个图形是全等形

43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

48、定理四边形的内角和等于360°

49、四边形的外角和等于360°

50、多边形内角和定理n边形的内角的和等于(n-2)×180°

51、推论任意多边的外角和等于360°

52、平行四边形性质定理1平行四边形的对角相等

53、平行四边形性质定理2平行四边形的对边相等

54、推论夹在两条平行线间的平行线段相等

55、平行四边形性质定理3平行四边形的对角线互相平分

56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58、平行四边形判定定理3对角线互相平分的四边形是平行四边形

59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60、矩形性质定理1矩形的四个角都是直角

61、矩形性质定理2矩形的对角线相等

62、矩形判定定理1有三个角是直角的四边形是矩形

63、矩形判定定理2对角线相等的平行四边形是矩形

64、菱形性质定理1菱形的四条边都相等

65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66、菱形面积=对角线乘积的一半,即S=(a×b)÷2

67、菱形判定定理1四边都相等的四边形是菱形

68、菱形判定定理2对角线互相垂直的平行四边形是菱形

69、正方形性质定理1正方形的四个角都是直角,四条边都相等

70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的

72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74、等腰梯形性质定理等腰梯形在同一底上的。两个角相等

75、等腰梯形的两条对角线相等

76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77、对角线相等的梯形是等腰梯形

78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

83、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)

92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

94、判定定理3三边对应成比例,两三角形相似(SSS)

95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97、性质定理2相似三角形周长的比等于相似比

98、性质定理3相似三角形面积的比等于相似比的平方

99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101、圆是定点的距离等于定长的点的集合

102、圆的内部可以看作是圆心的距离小于半径的点的集合

103、圆的外部可以看作是圆心的距离大于半径的点的集合

104、同圆或等圆的半径相等

105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109、定理不在同一直线上的三点确定一个圆。

110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112、推论2圆的两条平行弦所夹的弧相等

113、圆是以圆心为对称中心的中心对称图形

114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116、定理一条弧所对的圆周角等于它所对的圆心角的一半

117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

121、①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r

122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

123、切线的性质定理圆的切线垂直于经过切点的半径

124、推论1经过圆心且垂直于切线的直线必经过切点

125、推论2经过切点且垂直于切线的直线必经过圆心

126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等

128、弦切角定理弦切角等于它所夹的弧对的圆周角

129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n

140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长

143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180

145、扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148

2024年初中数学规范性培训总结 篇21

一、平移变换:

1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

2、性质:(1)平移前后图形全等;

(2)对应点连线平行或在同一直线上且相等。

3、平移的作图步骤和方法:

(1)分清题目要求,确定平移的方向和平移的距离;

(2)分析所作的图形,找出构成图形的关健点;

(3)沿一定的方向,按一定的距离平移各个关健点;

(4)连接所作的各个关键点,并标上相应的字母;

(5)写出结论。

二、旋转变换:

1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

说明:

(1)图形的旋转是由旋转中心和旋转的角度所决定的;

(2)旋转过程中旋转中心始终保持不动。

(3)旋转过程中旋转的方向是相同的。

(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。

2、性质:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

3、旋转作图的步骤和方法:

(1)确定旋转中心及旋转方向、旋转角;

(2)找出图形的关键点;

(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

常见考法

(1)把平移旋转结合起来证明三角形全等;

(2)利用平移变换与旋转变换的性质,设计一些题目。

误区提醒

(1)弄反了坐标平移的上加下减,左减右加的规律;

(2)平移与旋转的性质没有掌握。

2024年初中数学规范性培训总结 篇22

1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等

5过一点有且只有一条直线和已知直线垂直

6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边

17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余

19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等

22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等

26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合

30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°

34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半

39定理线段垂直平分线上的点和这条线段两个端点的距离相等

40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形

43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

48定理四边形的内角和等于360°49四边形的外角和等于360°

50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°

52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3平行四边形的对角线互相平分

56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等

62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等

65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1关于中心对称的两个图形是全等的

72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等

76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形

78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半

L=(a+b)÷2S=L×h

83(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)

95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方

99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的.两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形

114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理一条弧所对的圆周角等于它所对的圆心角的一半

117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心

126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角

129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)

136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

(n2)180139正n边形的每个内角都等于

n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

pnrn141正n边形的面积Sn=p表示正n边形的周长

2142正三角形面积

32aa表示边长4143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,

k(n2)180360化为(n-2)(k-2)=4因此

n144弧长计算公式:L=

nR180nR2LR145扇形面积公式:S扇形==

3602146内公切线长=d-(R-r)外公切线长=d-(R+r)

公式分类及公式表达式

乘法与因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解

bb24ac2a

根与系数的关系:X1+X2=-b/aX1*X2=c/a注:韦达定理判别式

b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac

2024年初中数学规范性培训总结 篇23

二次根式

1、二次根式:一般地,式子叫做二次根式。

注意:

(1)若这个条件不成立,则不是二次根式;

(2)是一个重要的非负数,即; ≥0。

2、重要公式:

3、积的算术平方根:

积的算术平方根等于积中各因式的算术平方根的积;

4、二次根式的乘法法则:。

5、二次根式比较大小的方法:

(1)利用近似值比大小;

(2)把二次根式的系数移入二次根号内,然后比大小;

(3)分别平方,然后比大小。

6、商的算术平方根:,

商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

7、二次根式的除法法则:

分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

8、最简二次根式:

(1)满足下列两个条件的二次根式,叫做最简二次根式,

①被开方数的因数是整数,因式是整式,

②被开方数中不含能开的尽的因数或因式;

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;

(4)二次根式计算的最后结果必须化为最简二次根式。

9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

10、二次根式的混合运算:

(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

一元二次方程

1、一元二次方程的一般形式:

a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

3。一元二次方程根的判别式:当ax2+bx+c=0

(a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:

Δ>0 有两个不等的实根;

Δ=0 有两个相等的实根;Δ<0 无实根;

4。平均增长率问题————————应用题的类型题之一(设增长率为x):

(1)第一年为a ,第二年为a(1+x) ,第三年为a(1+x)2。

(2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。

旋转

1、概念:

把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

旋转三要素:旋转中心、旋转方面、旋转角

2、旋转的性质:

(1)旋转前后的两个图形是全等形;

(2)两个对应点到旋转中心的距离相等

(3)两个对应点与旋转中心的连线段的夹角等于旋转角

3、中心对称:

把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

4、中心对称的性质:

(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

(2)关于中心对称的两个图形是全等图形。

5、中心对称图形:

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2024年初中数学规范性培训总结 篇24

这学期,一个全新的教育理念生本教育进入了我们的视线,将生本教育融入到高效课堂中来,通过这段时间的摸索和探索,我对实施高效生本课堂做如下总结。

一、学生们得到了释放

“生本教育”要求教师放弃讲解,而是抛出有价值的问题让学生你一句我一句的讨论,体现出学生是学习的主人。在课堂上给学生充足的时间,让孩子们自主交流、展示成果、互相质疑,在合作、交流、质疑中主动学习,获取知识和解决问题的能力,经过自己的实践获得的知识,他们特别有成就感,自信心增强,在这种氛围中学习,孩子们很放松,他们得到了释放,在课堂上很放的开,对学习更加感兴趣了。其中,我们班的崔新伟同学的变化就很明显,原来的时候他在课堂上属于不主动积极回答问题的那类学生,学习的参与积极性不高,但自从我们开始让学生们一小组合作为单位讨论、探究并走向讲台当小老师为大家讲题后,他像换了一个人似的,积极性特别高。看到同学们的变化,我特别高兴特别激动。

二、老师的角色得到翻天覆地的变化

关于这一点我深有体会,自从实施了高效生本课堂,我才意识到我这样的老师太强势了,而且我发现在教学中我们太自作多情了,很多时候我们一厢情愿承担了许多工作,渴望孩子们按照我们设计的方向去发展,但到最后却往往是我们自己失败。

三、遇到的问题

在高效生本课堂中,我发现孩子们都是自信的、快乐的,当学生从自己研究和探索中发现规律,找到解决问题的方法的时候,我感到非常的意外和喜悦。但是,有时候还存在一些问题,孩子们怎么这么不合作?语言表达能力怎么这么欠缺?每次做总结时怎么总是说不到点子上,还这么罗嗦?实际上,他们的现状都非常正常,因为在前期,我们并没有在课堂上有意识的去培养孩子的.这些方面的好习惯,现在,我们刚刚接触生本教育,作为老师是新手,很多地方作的都不够,又何况是孩子们呢?但是,通过他们的变化,发现他们在学习上冲劲十足,自主意识很强,慢慢有了合作意识,更多的是学习上的创新意识,我深切的意识到,孩子们的潜力是无穷无尽的。

2024年初中数学规范性培训总结 篇25

一、圆

1、圆的有关性质

在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

由圆的意义可知:

圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆

l、过三点的圆

过三点的圆的作法:利用中垂线找圆心

定理不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法

反证法的三个步骤:

①假设命题的结论不成立;

②从这个假设出发,经过推理论证,得出矛盾;

③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角

则两个钝角之和>180°

与三角形内角和等于180°矛盾。

∴不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

推理2:圆两条平行弦所夹的弧相等。

四、圆心角、弧、弦、弦心距之间的关系

圆是以圆心为对称中心的中心对称图形。

实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

五、圆周角

顶点在圆上,并且两边都和圆相交的角叫圆周角。

推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。

六、圆的判定性质

1.不在同一直线上的三点确定一个圆。

2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2 圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的集合

5.圆的内部可以看作是圆心的距离小于半径的点的集合

6.圆的外部可以看作是圆心的距离大于半径的点的集合

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12.①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 dr

13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理 圆的切线垂直于经过切点的半径

15.推论1 经过圆心且垂直于切线的直线必经过切点

16.推论2 经过切点且垂直于切线的直线必经过圆心

17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等 外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离 dR+r ②两圆外切 d=R+r

③.两圆相交 R-rr)

④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)

2024年初中数学规范性培训总结 篇26

初中数学长方形的中考知识点集锦

长方形也就是我们所说的矩形,是基础的平面图形。

长方形

有一个角是直角的平行四边形叫做长方形 (rectangle)。又叫矩形。

长方形长与宽的定义:

第一种意见:长方形长的那条边叫长,短的那条边叫宽。

第二种意见:和水平面同方向的叫做长,反之就叫做宽。长方形的长和宽是相对的,不能绝对的说“长比宽长”,但习惯地讲,长的为长,短的为宽。

长方形的性质

①两条对角线相等;

②两条对角线互相平分;

③两组对边分别平行;

④两组对边分别相等 ;

⑤四个角都是直角;

⑥有2条对称轴(正方形有4条)。

以上的内容是长方形的性质及定义,请大家做好笔记了。

2024年初中数学规范性培训总结 篇27

一、数与代数

a、数与式:

1、有理数:

①整数→正整数/0/负整数

②分数→正分数/负分数

数轴:

①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:

①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:

①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:

①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数

平方根:

①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:

①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。

实数:

①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:

①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式

整式:

①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn除法一样。

整式的乘法:

①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式

整式的除法:

①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:

①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

初中数学知识点:直线的位置与常数的关系

①k>0则直线的倾斜角为锐角

②k<0则直线的倾斜角为钝角

③图像越陡,|k|越大

④b>0直线与y轴的交点在x轴的上方

⑤b<0直线与y轴的交点在x轴的下方

2024年初中数学规范性培训总结 篇28

1.分式及其基本性质:分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的值不变。

2.分式的运算:

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

2024年初中数学规范性培训总结 篇29

一、学情分析的目标:

(1)进一步培养良好的数学行为习惯和学习习惯。

(2)加强学风建设,培养学习数学的兴趣,明确学习任务,注重学法指导,提高学习效率。

(3)培养学生获得知识和技能,培养观察和分析推理的能力,培养学生实事求是,严肃认真的科学态度和学习方法。

二、学情分析的内容:

主要包括学生学习起点状态的分析、学生潜在状态的分析两部分。学生起点状态的分析主要从三个维度展开:知识维度,指学生的认知基础;技能维度,指学生已有的学习能力;素质维度,指学生的学习态度、学习习惯、意志品质……学生潜在状态的分析,主要指学生可能发生的状况与可能的发展。下面我就初中数学课作学情分析,敬请各位老师斧正。

在我的数学教学中,我认为学生的数学基础影响学生的学习兴趣,九年级任务重,学习进度快,两级分化严重,学生学习主动性不够,学生学习习惯有待提高。学生除了需要学习数学,还要学习其它科目,时间有限,需要我们教师教会学生解题方法以提高速度。

三、学情分析的方法:

1.学生的热点问题要善于剖析

我们捕捉到的来自学生中间的信息,可能非常凌乱,成因也可能会很复杂,与数学教学的联系或许未必紧密,不可能把捕捉到的所有信息简单地堆砌到课堂教学中去。这就需要教师学会用实事求是的观点、方法,耐心分析、遴选出与思想数学结合最紧密、最有代表性的学生热点。分清哪些是积极的、哪些是消极的

2.用心捕捉学生热点问题

学生在为人处事的生活实践中,常常会对某一事物或某一问题表现出极大的关注和倾向,这种关注点和倾向性构成了学生的热点,成为把脉学情的捷径。数学课是一门思维较强的课程,准确把握学生学习中的热点问题,有助于增强教学的实效性和针对性。

做好学生的思想工作,阐明中考竞争的严峻形势,让学生有忧患意识,从而调动学习的积极性。多与各科教师联系,及时了解学生动态,接受科任老师的建议。多与家长交流,形成合力,共同督促学生学习,使其进步。学生进行深刻的自我反思,对自己的学习提出具体的要求,促成每个学生形成适合自己的良好学习方法。

2024年初中数学规范性培训总结 篇30

平方差公式:a^2;-b^2;=(a+b)(a-b);

完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;

注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);

立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;);

完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;.

其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca)

例如:a^2; +4ab+4b^2; =(a+2b)^

2024年初中数学规范性培训总结 篇31

一直以来,在试卷讲评课的上法上总存在着一些困惑。例如,试卷上的错题因人而异,如何上能照顾到全体,将每位学生出错的问题解决?通过这次培训我认识到,我们没有足够的时间面面俱到的讲解,在一定的时间内想面面俱到,那么每个题目也只是蜻蜓点水,一节课下来真正沉淀到头脑中的知识寥寥无几。今后的试卷讲评课我打算按照下面的思路来上,请刘老师多批评指正。

一、考试之后教师要做好测试分析,并充分备课。

通过测试分析,首先,弄清学生集中出错的题目,找出学生的共性问题,并针对这些共性的问题展开备课。备课要备学生出错的原因,试卷讲评时如何对这些问题讲解与完善。其次,弄清每位学生的得分,对于成绩波动大的同学通过谈话等方式及时了解情况并帮助解决困难。

二、下发试卷,学生自己纠错。

给学生自己纠错的机会,将能自己改正或通过小组合作改正的题目在试卷讲评前改过来。

三、订正答案,进一步改错。

给学生标准答案,在答案的引导下,学生进一步寻找解题思路,完善解题步骤,查找丢分原因,加深对知识的理解。

四、重点题、错题重点讲解。

经过两轮的改错之后学生存留下的问题已经很少,教师试卷讲评时就要解决这些遗留问题、重点题、错题。对于这些问题可以通过分类讲解、同类知识串讲、变式训练、一题多解、多个知识点上串下联等方式讲透。经过寻根问底,可使学生对不明确的知识点加深理解,再认识,然后巩固练习。这个过程下来同时可复习到多个知识点,建立知识体系,拓展学生思维。

五、方法总结。

围绕一个知识点讲解之后,要让学生总结解题思想、方法,掌握答题技巧。需要时可让学生简记。

六、解答疑问。

通过学生提出疑问,大家共同解答,完善学生对知识的认识。近几年教基础年级,所以感觉上章节复习课较多,专题复习课很少。我们学校的章节复习课与刘老师的“出示问题,引出知识”是一致的。通过问题的解决实现知识点的复习。

2024年初中数学规范性培训总结 篇32

初中数学集合的运算中考知识点集锦

集合的运算知识:它包括有交换律、结合律、分配对偶律、对偶律、同一律等。

集合的运算定律

交换律:A∩B=B∩A

A∪B=B∪A

结合律:A∪(B∪C)=(A∪B)∪C

A∩(B∩C)=(A∩B)∩C

分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C)

A∪(B∩C)=(A∪B)∩(A∪C)

对偶律:(A∪B)^C=A^C∩B^C

(A∩B)^C=A^C∪B^C

同一律:A∪Φ=A

A∩U=A

求补律:A∪A'=U

A∩A'=Φ

对合律:(A')'=A

等幂律:A∪A=A

A∩A=A

零一律:A∪U=U

A∩U=A

吸收律:A∪(A∩B)=A

A∩(A∪B)=A

德·摩根定律(反演律):(A∪B)'=A'∩B'

(A∩B)'=A'∪B'

知识拓展:容斥原理(特殊情况):card(A∪B)=card(A)+card(B)-card(A∩B)

2024年初中数学规范性培训总结 篇33

圆的知识:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:

(1)如定义(1)中,该定点为圆心

(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。πr,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

2024年初中数学规范性培训总结 篇34

一元一次方程定义

通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。

即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。

一元一次方程的五个核心问题

一、什么是等式?1+1=1是等式吗?

表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。

一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。

等式与代数式不同,等式中含有等号,代数式中不含等号。

等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。

二、什么是方程,什么是一元一次方程?

含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。

只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。

凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。

三、等式有什么牛掰的基本性质吗?

将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。

移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。

去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。

四、等式一定是方程吗?方程一定是等式吗?

等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。

五、"解方程"与"方程的解"是一回事儿吗?

方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。

一键复制全文保存为WORD