初中数学年度总结(精选33篇)
圆周角知识点
1、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)
2、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3、推论:
1)在同圆或等圆中,相等的圆周角所对的弧相等。
2)直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)
4、圆内接四边形的性质定理:圆内接四边形的对角互补。(任意一个外角等于它的内对角)
补充:
1、两条平行弦所夹的弧相等。
2、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
3、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。
平均数中位数与众数知识点
1、数据13,10,12,8,7的平均数是10
2、数据3,4,2,4,4的众数是4
3、数据1,2,3,4,5的中位数是3
有理数知识点
1、大于0的数叫做正数。
2、在正数前面加上负号“-”的数叫做负数。
3、整数和分数统称为有理数。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴。
5、在直线上任取一个点表示数0,这个点叫做原点。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7、由绝对值的定义可知:
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则:减去一个数,等于加上这个数的相反数。
14、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
初中数学总复习是初中数学教学的一个至关重要的环节。重视并认真完成这个阶段的教学任务,一是有利于初三学生巩固、消化、归纳数学基础知识;二是对基础较差的学生做到了查缺补漏,中等生有所提高,优等生再上一步,达到培优补差的目的;三是提高学生分析、解决问题的能力,以便应对中考,同时也能够使学生将所学的知识运用到现实生活中,达到学以致用。下面我结合多年来的教学实践与经验谈谈看法。
一、根据大纲和考纲,制订复习计划
初中数学内容多而杂,其基础知识和基本技能又比较分散,学生掌握起来很困难。因此,教师必须依据大纲规定的内容和知识要点,近几年的中考精神及试题的考点,精心拟订复习计划。计划的拟订要结合学生的实际情况。可采用基础知识习题化的方法,根据在平时教学中掌握的学生应用知识的情况,编制渗透主要知识点的测试题,让学生在规定时间内独立完成。然后根据测试中学生出现的问题确定复习的重点、难点及关键处。制订复习计划后,要做好复习课例题的选择、练习题的筛选。教师制订的复习计划要明确告之学生,让其制订个人具体复习规划。这样使每位学生都能在双重计划的督促下去学习、去努力。
二、理解、掌握、夯实基础知识
总复习开始的.第一阶段,首先必须强调学生系统掌握课本上的基础知识和基本技能,吃透课本。对学生提出明确的要求:
①对概念性的知识(法则、公式、定理等),不但要准确叙述,而且要灵活应用。例如,圆周角定理的推论:在同圆或等圆中,相等的圆周角所对的弧相等。如果把“同圆或等圆”这一条件忽略,后一部分即是一假命题,那么利用其作为依据就会得出错误的结果。因此一定要准确理解掌握概念性知识。
②对课本上的练习题必须逐题过关。因为每章后的复习题具有代表性、典型性、综合性,要求学生必须独立完成或小组讨论完成。尤其是近些年来的一些中考试题,是按课本上题的题型或是原题拓展延伸进行变形而命题的。所以在总复习时教师和学生都应注重课本知识。
三、整理、归纳、分类,培养学生能力
在总复习的第二阶段,要特别体现教师的主导作用。对初中数学知识加以系统整理、归纳、分类,弄清数学知识间的内在联系及相互转化,从而形成知识网络。这样便于学生理解和掌握所学的知识。例如,初中函数部分主要分为一次函数、反比例函数、二次函数。四边形主要分为平行四边形、矩形、菱形、正方形。方程有一元一次方程、一元二次方程、分式方程。这种归纳总结在程度高的班级可由学生自行完成,在程度低的班级师生共同完成,其主要目的是锻炼学生的归纳概括总结能力。通过对特殊四边形的性质、几种方程的解法的复习,学生能更进一步地了解数学知识间内在联系及相互转化关系,同时掌握转化思想。如解分式方程应转化成整式方程,一元二次方程应转化成一元一次方程。又如,利用图示表示几种四边形的关系,从而激发学生学习数学的兴趣。这样的知识归纳、整理便于学生理解和掌握。
四、精选练习题,提高复习成效
除了重视课本中的重点章节之外,主要以反复练习为主,充分发挥学生的主体作用。以综合练习题为主,适当加大模拟题的分量。对教师来说,这时的主要任务是根据近几年的中考试题精选习题,删减复习资料中没有价值的题目,免得浪费学生过多的时间。精选综合练习题要注意两个方面:
第一,选择的习题要有目的性、典型性和规律性。近些年的中考都涉及较多基础性的题目。另外,选些联系生活实际,比较热点的开放性问题。在试卷讲评中充分发挥学生的主体作用,让学生自己评析,这样能大幅度提高学生学习积极性,从而培养学生的实践能力。
第二,习题要有启发性、灵活性和综合性。如,角平分线定理的证明及应用;圆中圆周角、圆心角的关系推导及应用、垂径定理的证明及应用都是综合性强且是应重点掌握的内容,要抓住不放,抓出成效,收到举一反三,触类旁通的效果。练习题的精选是很重要的,不可忽视。教师出题测试时,低、中、高档题的比例要恰当,同时也要结合学生实际。讲评时要有针对性,不面面俱到。
总之,搞好初中数学总复习不是一件容易的事,是一项重大的工程。教师要不断刻苦钻研,严格要求自己,上好每一节复习课。
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
六、圆的判定性质
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 dr
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 dR+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)
基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。
质数
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。
算术基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。
概念
只有1和它本身两个约数的自然数,叫质数(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的约数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个约数外,还有其它约数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的约数除了1和它本身4这两个约数以外,还有约数2,所以4是合数。)
100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。
注:1既不是质数也不是合数。因为它的约数有且只有1这一个约数。
期末考试已经过去了,同学们的成绩也已经出来了。这个学期,我们班同学的数学成绩总体上进步了两分的平均分,可以说是取得了很大的进步。作为老师,我感到很欣慰。现对这个学期的工作进行一个总结,让之后的工作取得更大的进步。
首先,我在这个学期改变了之前的教学方法,以提高课堂的趣味性。在上个学期的时候,我发现同学们相比于数学、语文等这些课程,对音乐、美术这一类充满趣味性的课程更感兴趣,更期待。所以,我认为把课堂变得生动有趣,能够激发同学们的学习兴趣。
我一共改进了两个方面,一个是增加了与同学们之间的互动,一个是改变了我上课的语言。我这个学期,在上课的时候,提问的频率增加了。我不再是传授给同学们知识,而是让同学们和我一起发现知识,这样大大的增加了学生的学习兴趣。我的课堂语言也不再是死板的陈述书上的内容,而是让我的话语变得更加的有趣,肢体语言也更加的丰富,能够吸引同学们的注意力。
通过这样的改变,同学们的注意力更加集中,更加热爱上课了,而不是像之前那样,为了有一个好的成绩而不得不听课。
其次,后进生的转化一直是每个老师最头疼的问题。优生都是爱学习的,但后进生却不一样,他们对学习没有兴趣。每个学生不想学习的原因都不一样,所以后进生的`转化是非常具有挑战性的,但对班级来说又是至关重要的。
为了解决这个问题,我将自己视为学生的朋友,平时多与他们聊天、交流、谈心,从中找出他们不爱学习的原因,解决这个阻碍他们学习的因素,让他们喜欢学习。经过了解之后,我发现其中几个同学认为数学太难了,自己肯定学不会,所以干脆不学。还有一部分同学是因为学不会,就干脆放弃。
实际上,初中数学的难度并不大,只要认真学习,多花一点时间,就能够学好。对于这些同学,我会在课下多花时间辅导他们的学习,让他们一个一个地理解数学的知识点,把难度降低。
一个学期下来,这些同学的数学成绩都有了进步,有的进步的大一点,有的进步的少一点,但都有了进步。这个结果我自己也很满意,在下一个学期,我将继续进行后进生的转化工作,让他们的数学成绩变得更好。
最后,我会不断尝试新的教学方法,找到最适合的方法,帮助同学们更好地掌握数学知识。
初中数学长方形的中考知识点集锦
长方形也就是我们所说的矩形,是基础的平面图形。
长方形
有一个角是直角的平行四边形叫做长方形 (rectangle)。又叫矩形。
长方形长与宽的定义:
第一种意见:长方形长的那条边叫长,短的那条边叫宽。
第二种意见:和水平面同方向的叫做长,反之就叫做宽。长方形的长和宽是相对的,不能绝对的说“长比宽长”,但习惯地讲,长的为长,短的为宽。
长方形的性质
①两条对角线相等;
②两条对角线互相平分;
③两组对边分别平行;
④两组对边分别相等 ;
⑤四个角都是直角;
⑥有2条对称轴(正方形有4条)。
以上的内容是长方形的性质及定义,请大家做好笔记了。
作为一名数学教师,我有幸参加了中国教师研修网组织的国培计划(20xx年)——贵州省农村中小学教师远程培训项目的贵阳初中数学教学技能研修班的培训学习,使我深受启发和鼓舞!通过这次培训学习我开阔了知识视野,加深了数学课程改革的认识,提升了对素质教育改革的理解,对今后的教育教学工作一定会起到重要的促进作用。同时,也衷心感谢各级领导为我提供了这次宝贵的学习机会。
第一、通过参观学习及研讨交流,丰富了阅历,拓宽了视野,提升了对数学教育教学的认识。在短短几个月的学习时间里,虽然紧张而忙碌,但更感充实与快乐。在这里,来自全国各地各领域专家学者给我们带来了精彩纷呈的学术报告,专家们精辟独到的理论阐述、鲜活生动的案例分析,拓宽了我们的视野,丰富了我们的知识,启迪着我们的思想;
培训学习的同时,有机会与来自贵阳市各地的100多名学员们一起交流各学校的教学改革经验,切磋课堂教学技艺。往日教学教研中的许多疑难、困惑就在这种学习、讨论、交流中得以解答。这次培训为全体参训学员今后的工作提供了强大的理论支持和精神动力。
第二、通过学习经典务实的课例,开阔了我的视野。数学教师的视频课,对于我,很好地起到了示范作用。让我从他们的课堂中领略了他们的执教标准,以及驾御课堂的能力,可以说重新让我坚定了课堂教学的信念。教学中,教师要勇于创新,改变传统的教学定势,进行有针对性的辅导与帮助,从而激发学生的学习兴趣,培养他们勇于实践的能力。课例从不同层次、不同角度重新提升了我对课堂教学的认识与把握,极大地开阔了我的视野。
第三、通过几次专家在线研讨,解除我心中的许多困惑。在培训中,专家们的授课涌现出太多精彩,让我感受到了大师们高尚的师德修养,以及他们的敬业精神,深邃的思考、扎实的工作作风和积极乐观的心态,使我深切领悟到“学高为师,德高为范”的真谛,给我这个一线的教师留下了终生挥之不去的印象,它必将成为我今后人生的指南,事业的航标,深深地影响着我、激励着我。他们身上理想的光辉照亮了我的心房,也改变了我曾有的.学习观念,告诉自己要多学习。曾经认为自己从教十几年,知识已经足够,课堂也可以深浅无谓。当我看完视频欣赏完同行的课堂听完专家的点评之后,我深有感触:我们需要的不仅仅是书本上的专业知识,更需要的是渊博的知识、教育的智慧。我们自身要多学习知识,让自身知识不断厚重。专家的在线研讨,对困扰一线教师教学中存在的问题进行解答。通过认真学习专家的留言答疑,使我明确了自己今后的教学目标,而且对一些现实存在的问题有了自己解决的心理准备。尽管面对的困难很多,但我要积极地进行教学改革、探索新教学方法,积极进行尝试新课改。
第四、通过专家的讲课,专家的研讨,使我们知道教学中要了解数学的发展,深刻意识数学的发展史对教学中的作用。传统的数学教育使得教师在课堂上讲授的知识的现在,忽视了知识的过去发明过程。我们说人的学习是一个认知过程,而教科书上讲的往往是成熟的、完美的知识,而从不讲获得真理的艰苦历程,使学生认识不到数学发展的曲折性,更不能让学生了解知识发展过程,容易使学生产生误解,以为数学家获得知识很轻松。这严重阻碍了学生创造力的发展。了解数学发展过程中的数学家的故事,能够使学生从数学家身上学习锲而不舍的精神,在学习中鞭策自己。
第五、通过远程研修,激励自身成长,展望未来。培训虽然是短暂的,但是收获是充实的。让我站在了一个崭新的平台上审视了我的教学,使我对今后的工作有了明确的方向,这一次培训活动后,我要把所学的教学理念咀嚼、消化内化为自己的教学思想,指导自己的教学实践,要不断搜集教育信息,学习教育理论,增长专业知识,课后经常撰写教学反思,以便今后上课进一步提高,并积极撰写教育随笔和教学论文参与投稿或评比活动。我的未来目标是通过自己的不断磨砺成为一名数学骨干教师,我有信心在未来的道路上通过学习,让自己走得更远,要想让自己成为一名合格骨干教师,为了理想中的教育事业,我将自强不息努力向前!
总而言之,在今后的工作中,我还会一如既往地进行专业研修,不断创新思路,改进教学方法,使自己真正成为一名数学骨干教师。
学好数学,并不是一两天的事情。我认为,最关键的是要培养起你对它的兴趣。因为热管如果你讨厌它,不感兴趣,甚至头疼、害怕,那你很难在数学上努力了。像这样,对数学没兴趣、不努力,就很难学好它了。
当然,光有兴趣还不够。还得努力去学好它。最起码得背熟书上已学过的概念、公式,有时间最好预习一下新课,使第二天上新课掌握得更快、更多、更好。上课简单记些笔记,把要点记下来,晚上回家多复习,总结一下,温故知新。对不理解的题目,要问老师,问懂为止。当有比老师更简单的解题方法,可以提出,和老师、同学一起讨论。不要担心自己可能会错而不敢提出,有问题提出,是个锻炼的好机会。老师是启发我们的人,并不是“拐杖”,关键得靠自己努力、多动脑。可以平时多做一些课外较灵活的题。有时一道难题怎么也做不出来,想了几天做出来了,就会有一种成功的喜悦。
仔细、认真也不可缺少。解答每一题都要认真仔细,思想集中。一张数学试卷,大部分题都需计算。计算就要仔细,有些题有陷阱,必须得仔细。卷子做完了得仔细检查。做题时得根据最后问题找出关键条件,认真理解。一般来说,每句话、每个条件都有作用,应好好利用来解答题目。
第一部分:什么样的人数学容易学好
一、智力背景广阔的人
教育家苏霍姆林斯基说过,“必须识记的材料越复杂,必须保持在记忆里的概括、结论、规则越多,学习过程的‘智力背景’就应当越广阔。”换句话说,学生要能牢固地识记、理解并灵活运用公式、规则、结论等,他就必须阅读和思考过许多并不需要识记的材料。
调查过程中我们发现,数学成绩优秀的大学生往往拥有广阔的智力背景,喜欢阅读一些文学名著、传记历史,也喜欢阅读一些数学方面的书,比如《速算秘诀》《中学生数理化》以及图书馆、书店里的趣味智力书籍。此外推荐和数学相关的书目:《好玩的数学系列》《训练思考能力的数学书》《故事中的数学》。
除建立广阔智力背景外,阅读对提高审题能力和学习兴趣也大有帮助。
二、喜欢“偷懒”的人
你相信吗?喜欢“偷懒”的人数学往往学得好,他们的个性特征也往往是崇尚简单。为什么?因为这一类人遇事都会这样想:“有没有更简便的方法啊?”经常这样思考,就会逐渐具备一眼抓住重点和关键环节,一眼就看到最便捷的解题办法的能力。
三、生活经验丰富的人
学好数学需要过的一关是情景理解。数学是解决实际问题的学科,没有生活经验,往往难以将数学知识转化为解题方法。调查过程中我们发现,数学学习好的人有以下生活经验:
1、经常跟长辈一起体验、甚至帮助长辈处理一些家务事,比如卖东西、买东西、逢年过节算账目等等。
2、有实践的兴趣。休闲时间,很多人都会去打球、逛街,而我们调查的这部分大学生更愿意去做一些有实践意义的事情。有一位大学生就提到,自己上初中的时候,曾和一个好友一起用自行车和卷尺丈量过新校区的面积。
第二部分:怎样学数学
一、恰当的学习方法和学习习惯
数学是多功能学科,逻辑性、系统性都很强。学习掌握数学知识,应该有比较科学的学习方法。方法得当,可以“功夫不负有心人”事半功倍;方法不对,就会“费力不讨好”,事倍功半。学习有效果,就会越学越有兴趣;学习成绩总是提不高,就会慢慢丧失学习信心。是否掌握较为科学的学习方法,是学习成败的关键。根据整理的优秀大学生的数学学习经验精髓,我们认为,较为科学的学习方法和习惯,主要体现为下述五个基本环节。
1、做好课前预习,掌握听课主动权。凡事预则立,不预则废。
2、专心听讲,做好课堂笔记。听课要提前进入状态。课前准备的好坏,直接影响听课的`效果。
3、及时复习,把知识转化为技能。复习是学习过程的重要环节。复习要有计划,既要及时复习当天功课,又要及时进行阶段复习。
4、认真完成作业,形成技能技巧,提高分析解决问题的能力。教育权威杨乐院士在回答中学生如何学好数学的问题时,就是很简短的三句话:一是在理解的基础上多实践,二是在理解的基础上多积累,三是循序渐进。这里所说的实践,就是做题,就是完成作业。
5、及时进行小结,把所学知识条理化、系统化。学完一个课题或是一个章节,就要及时进行小结。每一环节的落实程度如何,都直接关系到下一环节的进展和效果。一定要先预习后听讲,先复习后作业,经常进行阶段小结。
每天放学回家,应该先复习当天功课,次完成当天作业,后预习第二天功课。这三件事,一件也不能少,否则就不能保证第二天有高质量的听课效果。
在平时的学习中,老师都要求学生备用一个错题本,便于学生课下复习使用,但平时教师仅仅强调学生课下复习浏览自己的错题本,却很少要求看别人的错题本。其实,经常借阅同学们的错题本很有必要。借阅时注意:
第一借阅比自己水平高的同学的错题本,这样便于丰富、拓宽自己的知识领域。第二,看比自己水平较低的同学的错题本,便于经常给自己敲响警钟。借阅同时,要做好自己的读书笔记,便于自己平时参阅。在开始阶段至少一周要有两次重现阅读,过两周后可一周,这样循序渐进。此方法可运用于其他各个学科。
二、良好的学习动机和学习兴趣
学习动机是推动学生学习的直接动力,能使学生积极主动地进行学习。影响学生的学习动机和学习兴趣是多方面的,本次调查中提到的有:老师和家长鼓励性的话语,通过一些小技巧从小培养数学学习兴趣,如数学顺口溜、趣味数学问题、数学讲故事。自己用数学知识解决实际问题后或取得成绩后,获得的成就感和荣誉感,如计算出了书本的面积、轮胎的周长、获得竞赛奖项。
华罗庚说:“有了兴趣就会乐此不疲,好之不倦,因之也就会挤时间来学习了。”
三、坚强的意志
有了正确的学习动机,并不意味着学生就能顺利完成整个学习过程,在学习数学的过程中,他们还会遇到许多大大小小的困难。而使学生树立坚定的信心,勇敢地面对困难,继而战胜困难,获得知识和技能,则需要坚强的意志。不少学生学习成绩不佳并不是智力或其它方面有问题,而是他们缺乏克服困难的坚强意志,遇到困难就“打退堂鼓”,所以学习成绩总上不去。培养学生顽强的意志和坚强的毅力应从提高学生学习的自觉性和坚韧性两方面着手。自觉性是指学生对学习数学的目的和意义有深刻的认识,从而能自觉地进行刻苦学习。当学生认识到当前学习与祖国未来和自己的未来的关系,明确自己所担负的责任时,才能排除外界干扰与诱惑,使学习成为自觉的行动。学习目的越明确,对学习意义认识越清楚,学习的自觉性也就越强。坚韧性是指在完成学习任务时,坚持不懈地克服困难的品质。学生在学习的过程中,总会遇到一些困难,而满怀信心地迎接困难,奋力拼搏战胜困难,就是意志的坚韧性的表现。这是一种十分可贵的品质。有了这种品质,在学习遇到困难或挫折时,才不会灰心丧气;在取得好成绩时,也不会骄傲自满,而是善于总结经验教训,探索学习的规律和方法,奋勇前进。这种意志的品质,对培养创造型人才是非常必要的。
四、自信心与勤奋
自信心与勤奋也是对数学学习有着重要影响的两种非智力因素。树立自信心,相信自己通过努力能够学好数学,这对于后进学生更为重要。因为如果学生对学习丧失了信心,那么它就失去了战胜困难的精神力量。数学知识、技能的获得,数学能力的提高,离不开学生的勤奋与努力。所以培养学生勤奋好学、刻苦钻研精神是非常重要的。数学家张广厚说:“在学习数学的道路上没有任何捷径可走,更不能投机取巧,只有勤奋地学习,持之以恒,才会得到优秀的成绩。”可见勤奋能弥补学生某些智力的不足,促进学生数学能力的发展。
五、积极向上的心态
情感是人类对客观事物的一种态度与心理体验。在我们的研究中发现,凡是数学成绩始终保持良好的大学生,在小学和中学时代,都经常与老师进行感情交流,建立良好的师生关系,并且能和同学不断的交流学习中遇到的问题,不断切磋,分享经验,共同进步。
这里我举一个例子:李铭数学成绩相对较好,同学们有数学问题请教他的时候,他总是耐心帮助帮助同学,通过这个过程,他不但帮助了同学,而且自己对数学知识的理解也更深刻了。“你有一个苹果,我有一个苹果,交换一下,仍是一个苹果;我有一种思想,你有一种思想,交换一下,将成为两种思想。”而李铭的同桌,自认为自己的学习非常好,怕别人学习到自己的某方面知识和能力,记笔记都要用手挡着,怕被别人看到,所以他的知识只能是自己的和老师传递到他这里的,很快就落后了李铭很多。
通过上面的分析我们发现,数学学习好,其实并不难。这与孩子成长的家庭、社会、学校有着密不可分的关系。建议家长多给孩子看一些有益的书籍和视频,多让孩子参加一些有益的活动,给孩子提供一个良好环境。
一、特殊的平行四边形:
1.矩形:
(1)定义:有一个角是直角的平行四边形。
(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。
(3)判定定理:
①有一个角是直角的平行四边形叫做矩形。
②对角线相等的平行四边形是矩形。
③有三个角是直角的四边形是矩形。
直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。
2.菱形:
(1)定义:邻边相等的平行四边形。
(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
(3)判定定理:
①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四条边相等的四边形是菱形。
(4)面积:
3.正方形:
(1)定义:一个角是直角的菱形或邻边相等的矩形。
(2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。正方形既是矩形,又是菱形。
(3)正方形判定定理:
①对角线互相垂直平分且相等的四边形是正方形;
②一组邻边相等,一个角为直角的平行四边形是正方形;
③对角线互相垂直的矩形是正方形;
④邻边相等的矩形是正方形
⑤有一个角是直角的菱形是正方形;
⑥对角线相等的菱形是正方形。
二、矩形、菱形、正方形与平行四边形、四边形之间的联系:
1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。矩形是由平行四边形增加“一个角为90°”的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。
2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。
三、判定一个四边形是特殊四边形的步骤:
常见考法
(1)利用菱形、矩形、正方形的`性质进行边、角以及面积等计算;
(2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;
(3)一些折叠问题;
(4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。所以,以此为背景可以设置许多考题。
误区提醒
(1)平行四边形的所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆;
(2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆;
(3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);
(4)再利用对角线长度求菱形的面积时,忘记乘;
(5)判定一个四边形是特殊的平行四边形的条件不充分。
一、一次函数图象 y=kx+b
一次函数的图象可以由k、b的正负来决定:
k大于零是一撇(由左下至右上,增函数)
k小于零是一捺(由右上至左下,减函数)
b等于零必过原点;
b大于零交点(指图象与y轴的交点)在上方(指x轴上方)
b小于零交点(指图象与y轴的交点)在下方(指x轴下方)
其图象经过(0,b) 和 (-b/k , 0) 这两点(两点就可以决定一条直线),且(0,b) 在 y轴上, (-b/k , 0) 在x轴上。
b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。
二、不等式组的解集
1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1 。
2、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a
A 的解集是 解集 小小的取小
B 的解集是 解集 大大的取大
C 的解集是 解集 大小的 小大的取中间
D 的解集是空集 解集 大大的 小小的无解
另需注意等于的问题。
初中数学多项式的加法中考知识点
多项式和单项式一起被称为整式,整式的运算离不开加法,多项式也是如此。
多项式的加法
有限个单项式之和称为多元多项式,简称多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。
多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。
F上x1,x2,…,xn的多项式全体所成的集合F[x1,x2,…,xn],对于多项式的加法和乘法成为一个环,是具有单位元素的整环。 域上的多元多项式也有因式分解惟一性定理。
关于多项式的加法计算的中考知识要领已经为大家整合出来了,请同学们相应做好笔记了。
不知不觉,一个学期的教学工作又告一段落了。本学期是我第一次担任数学教学工作,经验尚浅,开始,对于重难点,易错点及中考方向可以说毫无头绪。为不辜负校领导及前辈们的信任,我丝毫不敢怠慢,认真学,积极请教,努力适应新时期教学工作的要求,从各方面严格要求自己,结合学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有效率地开展。一学期下来确实取得了一定的成绩。为使今后的工作取得更大的进步,现对本学期教学工作做出总结,希望能发扬优点,克服不足,以促进教训工作更上一层楼。
一、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,选择教学方法,认真写好教案。每一课都做到“有备而来”,每堂课都在课前做好充分的准备,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
二、增强上课技能,提高教学质量,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学需求和学能力,让各个层次的学生都得到提高。现在很多学生反映喜欢上数学课了。
作为一名初中数学教研组组长,我肩负着整个学科的发展方向。在本学期开始时,我制定了数学教研计划,以确保数学教学和教研工作能够顺利进行。由于今年初中部的教学班级增多,教学任务也加重了。作为一门主学科,数学的教学责任重大。因此,我们坚定不移地深化了 “杜郎口”和“洋思”教学改革,并将每周的周一下午第一节课定为固定的数学教研时间。在教研活动中,我们对各年级的本周教学内容及重点难点进行了把关,并对各种公开课和教研活动进行了集体教研和通告。我们努力完成各种教学任务,确保数学教学工作不会拖累学校的其他工作,并有效地避免了教学事故的发生。
本学期,由于初一数学课本及教学内容发生了较大变化,并且有两位新聘任的教师加入我们的团队。因此,我们将初一的教学内容作为本学期数学教研的重点。我们对这两位教师进行了长期的追踪听课和指导,共听评课20余节。这使得两位教师都取得了长足的进步,他们的教学成绩也得到了显著提高。在期末考试中,初一的一、二两个班的数学成绩取得了较好的成绩,而三、四两个班的成绩仍需加强。除此之外,其他年级的数学成绩也都取得了优异的成绩。
作为一班的班主任,我肩负着今年中考的.重任以及学校的期望。由于这一届学生是我刚接手的班级,我对学生的情况并不熟悉。因此,我在学期初花了大约一个月的时间,逐步了解、认识和熟悉了全班学生。接下来,我进行了一系列改革。首先,我精心挑选了班级干部,并鼓励他们在班级中开展工作。同时,我加强了对他们的指导,让他们尽快成熟,有力地进行班级管理。当班级干部逐渐成熟时,我们实行了议会制管理,并对班级内的事物进行了量化管理。此外,我对教师的教学进行了可行性分析,以确保教学能够有利于师生的发展。我们还每月举行一次选举,让有责任心的同学有更大的发展空间。
开展好主题班会是我们的另一个重点工作。作为初四学生,学习是最重要的。在主题班会中,我们注重加强对科学用脑的思想教育,以及对学生个人心理调适、科学休息法、记忆法、科学身体锻炼、营养搭配和科学用脑的最新成果等方面的指导。我们的工作都以真正有利于学生学习为主,力争在明年的中考中取得较理想的成绩。
一、数与代数A:数与式:
1:有理数
有理数:
①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。
减法: 减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2:实数
无理数:无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数/0的立方根是0/负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3:代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:
①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4:整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的.和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM。AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一样。
A0=1,A-P=1/AP
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式
方法:提公因式法/运用公式法/分组分解法/十字相乘法
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
B:方程与不等式
1:方程与方程组
一元一次方程:
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
2:不等式与不等式组
不等式:
①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
3:函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:
①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图象:
①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数Y=KX的图象是经过原点的一条直线。
③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。
④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
二、空间与图形
A:图形的认识:
1:点,线,面
点,线,面:
①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:
①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
3视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧,扇形:
①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2:角
线:
①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
③将线段的两端无限延长就形成了直线。直线没有端点。
④经过两点有且只有一条直线。
比较长短:
①两点之间的所有连线中,线段最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:
①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时
参加初中数学远程培训二个多月时间了,通过这段培训,我受益匪浅,感受很多。下面就是我的.点滴体会:
一.对新教材有了初步了解
学习了义务教育新课标的理念和课例解读后,我对于未曾变动的旧的知识点,考纲上有所变化的做到了心中有数。对于新增内容,哪些是中考必考内容,哪些是选讲内容,对于不同的内容应该分别讲解到什么程度,也更明确了。这样才能做到面对新教材中的新内容不急不躁、从容不迫,不至于面对新问题产生陌生感和紧张感。通过学习,使我清楚地认识到初中数学新课程的内容是由哪些模块组成的,各模块又是由哪些知识点组成的,以及各知识点之间又有怎样的联系与区别。专家们所提供的专业分析对我们理解教材,把握教材有着非常重要而又深远的意义。对于必修课程必须讲深讲透,对于部分选学内容,应视学校和学生的具体情况而定。
二.对课堂教学设计、教学案例的编写方面的内容有了提高。
培训活动中,自己通过视频观看学习了“案例导入”、“专家讲座”、“互动讨论”、“课例作业”等内容,使自己在教学设计、教学案例以及课堂教学等方面有了进一步的提升和加强,特别是在课堂教学设计,令人豁然开朗。通过视频观看学习了《有序数对》和《图形的旋转》,感觉很有收获。如以往听课从未记录过讲课者教学过程各个环节的时间分配,听课时只注意了讲课者的知识传授情况,而没注意欣赏、品析讲课者的教学追求、洞察其教学的理论依据等。特别是听了专家讲座后,自己才知道还有很多不足。自己今后将认真按专家的指点开展教学活动。
三、教学实战能力得到加强
本次培训充分关注培训教师的实际需要,不仅传授了现代教学技术和手段,在大的纬度上帮助教师构建理论体系,同时更关注新课程背景下课堂教学深层问题。专家向我们讲授了“计算机教学手段应用”“中学教师标准解读”“教学技术及应用”“新课标解读”等,先进的教学理念及其别具一格的教学风格使本人在观摩、思考、碰撞中得到提高。整个培训活动从实际到理论,再由理论到实际,循序渐进,降低了学习的难度,提高了学习的实效。
四、通过培训学习,使我清楚地认识到整体把握初中数学新课程的重要性及其常用方法。
整体把握初中数学新课程不仅可以使我们清楚地认识到初中数学的主要脉络,而且可以使我们站在更高层次上面对初中数学新课程。整体把握初中数学新课程不仅可以提高教师自身的素质,也有助于培养学生的数学素养。只有让学生具备良好的数学素养才能使他们更好地适应社会的发展与进步。与学生的总结、交流能促进我们产生更多更好的授课方式、方法,产生更多更新的科学思维模式。这对于我们提高课堂教学质量具有非常现实而深远的意义。
总之,此次培训活动,使自己的教育教学观念、教学行为方法、专业化水平,教育教学理论均有了很大的提升。今后,自己充分将所学、所悟、所感的内容应用到教学实践中去,做新时期的合格的初中数学教师。
一直以来,在试卷讲评课的上法上总存在着一些困惑。例如,试卷上的错题因人而异,如何上能照顾到全体,将每位学生出错的问题解决?通过这次培训我认识到,我们没有足够的时间面面俱到的讲解,在一定的时间内想面面俱到,那么每个题目也只是蜻蜓点水,一节课下来真正沉淀到头脑中的知识寥寥无几。今后的试卷讲评课我打算按照下面的思路来上,请刘老师多批评指正。
一、考试之后教师要做好测试分析,并充分备课。
通过测试分析,首先,弄清学生集中出错的题目,找出学生的共性问题,并针对这些共性的问题展开备课。备课要备学生出错的原因,试卷讲评时如何对这些问题讲解与完善。其次,弄清每位学生的得分,对于成绩波动大的同学通过谈话等方式及时了解情况并帮助解决困难。
二、下发试卷,学生自己纠错。
给学生自己纠错的机会,将能自己改正或通过小组合作改正的题目在试卷讲评前改过来。
三、订正答案,进一步改错。
给学生标准答案,在答案的引导下,学生进一步寻找解题思路,完善解题步骤,查找丢分原因,加深对知识的理解。
四、重点题、错题重点讲解。
经过两轮的改错之后学生存留下的问题已经很少,教师试卷讲评时就要解决这些遗留问题、重点题、错题。对于这些问题可以通过分类讲解、同类知识串讲、变式训练、一题多解、多个知识点上串下联等方式讲透。经过寻根问底,可使学生对不明确的知识点加深理解,再认识,然后巩固练习。这个过程下来同时可复习到多个知识点,建立知识体系,拓展学生思维。
五、方法总结。
围绕一个知识点讲解之后,要让学生总结解题思想、方法,掌握答题技巧。需要时可让学生简记。
六、解答疑问。
通过学生提出疑问,大家共同解答,完善学生对知识的认识。近几年教基础年级,所以感觉上章节复习课较多,专题复习课很少。我们学校的章节复习课与刘老师的“出示问题,引出知识”是一致的。通过问题的解决实现知识点的复习。
一.行程问题
行程问题要点解析
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2基本题型:已知路程(相遇问题、追击问题)、时间(相遇时间、追击时间)、速度(速度和、速度差)中任意两个量,求出第三个量。
二、利润问题
每件商品的利润=售价-进货价毛利润=销售额-费用
利润率=(售价--进价)/进价*100%
三、计算利息的基本公式
储蓄存款利息计算的基本公式为:利息=本金×存期×利率利率的换算:
年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意与存期相一致。利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)
四、浓度问题
溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量五、增长率问题
若平均增长(下降)数百分率为x,增长(或下降)前的是a,增长(或下降)n次后的量是b,则它们的数量关系可表示为:a(1x)b或a(1x)b
初中数学是学生学习数学的基础,主要帮助学生建立一个坚实的数学基础,使学生在以后学习深层次的数学时,能够冷静、从容地面对.在数学学习过程中,需要显示具备归纳推理的意识,通过一种思想类型的题目的练习后,需要显示进行归纳总结这种类型题目所包含的思想与规律,以便在下次做题时,学生能够快速地获得解题思路,提高学生的做题效率.归纳与推理对于学生以后的生活也会有很大的帮助.因此,在初中数学教学中,教师应该重视归纳推理意识的渗透.
一、传统教学存在的不足
在初中数学教学过程中,有些教师忽略了渗透归纳推理意识,这对学生的解题效率产生很大的影响,也不利于提高学生对问题的探索能力,而初中教学的主要目的就是提高学生的探索意识和逻辑思维能力.在做题过程中,教师没有积极地引导学生对思想相似的题目进行归纳总结,长此以往,就会导致在解题过程中发现,越来越多的'自己以前做过的题目,再次遇到与之相似的题目时,没有解决的思路,需要不断地请教别人,让别人帮助自己解决,逐渐消磨学生学习数学的兴趣.兴趣是学生学习的动力和源泉.学生有了学习兴趣,就会热爱学习,积极参与学习活动,对学习效率的提高有积极的作用.归纳推理意识的提高,需要教师在教学中进行有效的渗透.教师没有正确地引导学生对知识的归纳与推理的练习,就不能使学生透彻地理解解题技能的关键本质,从而影响了学生数学解题能力的提升.
二、对学生进行归纳推理意识渗透的重要性
学生拥有对知识的归纳和推理的能力,对于数学科目的学习有重要影响,数学问题都有相应的思想,所以学生通过将所遇到的思想类似的题目进行归纳,可以加深他们对这类题目的理解与记忆,在下次遇到这种类型的题目时,学生能够快速地获得解题思路,从而提高了学生的解题速率.当学生可以快速地解决掉一道题时,对增强学生的信心有积极的作用.归纳推理意识的渗透,能够帮助学生主动探究数学题目中的规律,有利于学生的解题效率的提升,调动学生学习的主动性和积极性,提高学生课堂学习的参与度,激发学生学习数学的兴趣.
三、如何有效地进行归纳推理意识的渗透
在教学过程中,教师可以在学习一个新的知识点之前,通过一些与之相关思想的例题,让学生进行解答,让学生无意识中对将要学习的知识点有了初步的了解,进行这一知识点教学时,学生可以深入地了解这一知识点.这样的方式,就是教师通过对知识点的渗透,让学生在深入理解的基础上,可以更好地进行归纳,也有助于学生的记忆.例如,在讲“一元二次方程”时,教师可以列出3个方程:(2-x)(3+x)=1;2=(2x-5)(6-x);3=(5+3x)(2-x).观察这些方程,学生可以通过一些转化将这三个方程转化为0=-x2-x+5;0=-2x2+17x-32;0=-3x2+x+7.不难观察出,这些方程都只含有一个未知数,而且这些方程中未知数的最高指数都为2.在不知道这是一元二次的方程这一概念时,学生通过自己的观察,了解这类方程的特点,接下来学习一元二次方程时,学生就会惊奇地发现,这就是前面老师让我们观察的方程.这样,学生就能够深入理解一元二次方程这一概念.在进行相关知识点渗透前,教师要选取合适的例子,需根据学生的知识基础选取与学生水平基础相应的例子.只有这样,才有利于学生的理解.因此,进行有效的归纳推理意识的渗透,对教学效率有着积极的影响.
四、结语
总之,在初中数学教学渗透归纳推理意识,对于学生学习数学有很大的促进作用,所以教师应该注重这一思想.教师应投入更多的精力,将归纳推理意识有效地渗透到数学教学中.这种意识,能够激发学生的学习兴趣,对提高学生的逻辑思维能力和问题探索能力有促进作用,从而提高学生的综合能力.
1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等
5过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等
26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合
30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°
34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形
37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半
39定理线段垂直平分线上的点和这条线段两个端点的距离相等
40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形
43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48定理四边形的内角和等于360°49四边形的外角和等于360°
50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等
62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等
65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1关于中心对称的两个图形是全等的
72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等
76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形
78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2S=L×h
83(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)
95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方
99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的.两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)
136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
(n2)180139正n边形的每个内角都等于
n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
pnrn141正n边形的面积Sn=p表示正n边形的周长
2142正三角形面积
32aa表示边长4143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,
k(n2)180360化为(n-2)(k-2)=4因此
n144弧长计算公式:L=
nR180nR2LR145扇形面积公式:S扇形==
3602146内公切线长=d-(R-r)外公切线长=d-(R+r)
公式分类及公式表达式
乘法与因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
bb24ac2a
根与系数的关系:X1+X2=-b/aX1*X2=c/a注:韦达定理判别式
b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac
顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。
中位线
中位线概念
(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。
注意:
(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。
(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。
(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。
教学之路仍在脚下延伸,作为教学之路上的蹉跎前行者,不求夏花之灿烂,但求秋叶之静美。在以后的工作中,我将保持自己的勤奋和执着,把自己的工作做的更好。 在中学任职以来,我本着以重实际、勤钻研、求实效的工作原则,以培养学生创新精神和实践能力为重点,以新课程改革为契机,优化教学常规,深化课堂教学改革,大力推行素质教育,求真、务实、创新、高效地工作着,现将教学工作总结如下:
一、一片冰心在玉壶——树立新的教育理念,坚定教书育人信念。
教育事业乃民族大业,振兴教育人人有责,素质教育和新课程改革对中学教育提出新的要求,学生成为教育的中心,爱成为教师职业道德的核心,也成为教书育人的根本途径,因此,我确立了“一切为了人的发展”的教育理念,明确了“用真挚的爱教育每一个学生”,用适合每个学生的方法教育学生的教学工作目标。
二、衣带渐宽终不悔——我的教学工作。
任职期间,我在坚持抓好新课程理念应用的同时,大胆改革课堂教学,探索新的教学方法,具体表现在:
1、进一步优化教学常规,充分发挥老师的主导作用。围绕着“什么是有效的历史教学?怎样才能提高课堂教学的有效性?”这一问题,我作了认真思考和分析,明确了教学思路和重点,一是在备课上下功夫,为此,我继续钻研和解读新课程标准、考纲和新教材,继续分析、了解学情,关注学生的知识基础、思想动态,备课做到知识点准确全面,知识体系简明科学,授课方式艺术多变,感染力强,使课堂教学集知识性、艺术性、思想性于一体,从而激发了学生的学习兴趣,有效调动了学生的学习积极性,大大提高了课堂效率。二是在巩固训练上设底线。即精心设计课后作业和单元检测,定时定量训练,全批全改,然后通过讲评使学生不仅查缺补漏,明确了知识,而且掌握了高质量完成试卷的技巧和方法,提高了解决问题的能力。
2、调动学生积极性,突出学生的主体地位。如何突出学生的主体地位?我从调动学生的学习积极性入手,因为积极性提高了,学生才会真正投入到学习中来,做到自主学习与合作探究,才会主动发现问题和解决问题。为此,在备课时,考虑学生的知识储备和兴趣点,设计出激发学生兴趣和激活学生思维的问题;课堂上与学生建立平等、民主的学伴关系,给自己的教学风格定位为亲切、风趣、激情、广博,这就是采取多鼓励、少批评的评
通过初中数学新课改教学,我有以下几点粗浅体会,在教学中一定要:
一、激发学生潜能,鼓励探索创新
建构主义学习理论认为,知识不是通过教师传授而得到的,而是学习者在一定的社会文化背景下,借助其他人(包括教师、家长、同学)的帮助,利用必要的学习资源,主动地采用适合自身的学习方法,通过意义建构的方式而获得的。这要求教师在课堂教学中,要根据教学内容创设情境,激发学生的学习热情,挖掘学生的潜能,鼓励学生大胆创新与实践。要让学生在自主探索和合作交流过程中获得基本数学知识和技能,使他们觉得每项知识都是他们实践创造出来的,而不是教师强加给他们的。
二、转变教育观念,发扬教学民主
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学过程中,教师要转变思想,更新教育观念,把学习的主动权交给学生,鼓励学生积极参与教学活动。教师要走出演讲者的角色,成为全体学生学习的组织者、激励者、引导者、协调者和合作者。学生能自己做的事教师不能代劳。教师的主要任务应是在学生的学习过程中,在恰当的时候给予恰当的引导与帮助。要让学生通过亲身经历、体验数学知识的形成和应用过程来获取知识,发展能力。即教师扮演好导演角色,学生扮演好小演员角色。 例如在学习同类项概念时,我针对初一学生的年龄特点,组织“找同类项朋友”的游戏。具体做法是这样的:把事先准备好的配组同类项卡片发给每个学生,一个同学找到自己的同类项朋友后,被“挤”出座位的另一个学生再去找自己的同类项朋友,比一比谁找得既快又准。这种生动的`形式和有趣的方法能使学生充分活动,学习兴趣大增,学生在愉悦的气氛中掌握了确定同类项的方法和合并同类项的法则。
三、联系生活实际,培养学习兴趣
某些学生不想学习或讨厌学习,是因为他们觉得学习枯燥无味,认为学习数学就是把那些公式、定理、法则和解题规律记熟,然后反反复复地做题。新教材的内容编排切实体现了数学来源于生活又服务于生活的思想,通过生活中的数学问题或我们身边的数学事例来阐明数学知识的形成与发展过程。在教学过程中,教师要利用好教材列举的与我们生活息息相关的数学素材和形象的图表来培养学生的学习兴趣。教师要尊重学生,热爱学生,关心学生,经常给予学生鼓励和帮助。学习上要及时总结表彰,使学生充分感受到成功的喜悦,感受到学习是一件愉快的事情。要通过自己的教学,使学生乐学、愿学、想学,感受到学习是一件很有趣的事情,值得为学习而勤奋,不会有一点苦的感觉。
例如在学习“实践与探索”中的储蓄问题时,我提前一周布置学生到本县的几家银行去调查有关不同种类储蓄的利率问题。教学中,让每个学生先展示自己所到银行收集到的各种各样有关储蓄的信息,然后再按每四人一组根据收集到的信息编写有关储蓄的应用题,教师可以有选择地展示学生的学习成果,让全班学生相互讨论、合作攻关,最后选派一些小组的代表作总结发言,老师点评,对做得较好的同学进行表扬。通过这样教学,学生在愉快中学到了知识,收到了良好的效果。
新教材中编排的有关内容,如“地砖的铺设”、“图标的收集”、“打折销售”等等,教师都可以充分利用,让学生走出课堂去学习,体会数学与生活的密切联系,培养学生的学习兴趣。
四、关注个体差异,促使人人发展
《数学课程标准》指出:数学教育要面向全体学生,实现:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。数学教育要促进每一个学生的发展,即要为所有学生打好共同基础,也要注意发展学生的个性和特长。由于各种不同的因素,学生在数学知识、技能、能力方面和志趣上存在差异,教师在教学中要承认这种差异,因材施教,因势利导。要从学生实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能。 新教材设计了不少如“思考”、“探索”、“讨论”、“观察”、“试一试”、“做一做”等问题,教师可根据实际情况组织学生小组合作学习,在小组成员的安排上优、中、差各级知识水平学生要合理搭配,以优等生的思维方式来启迪差生,以优等生的学习热情来感染差生。在让学生独立思考时,要尽量多留一些时间,不能让优等生的回答剥夺差生的思考。对于数学成绩较好的学生,教师也可另外选择一些较灵活的问题让他们思考、探究,以扩大学生的知识面,提高数学成绩。
五、媒体辅助教学,提高教学效益
《数学课程标准》指出:教师要充分利用现代教育技术辅助教学,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。因此,在课堂教学中,教师要根据教学内容恰当地运用计算机进行辅助教学,为学生提供更为广阔的自由活动的时间和空间,提供更为丰富的数学学习资源。 总之,只要我们在教学过程中能坚持利用新课程的理念来指导课堂教学,善于运用丰富多彩的课堂活动方式和教学手段,尽可能多地为学生创造动口、动脑、动手的机会,让他们更多地参与教学,学生学习数学的主动性和积极性就会得到不断加强,学生的数学素养和创新能力就一定会得到全面的提高与发展。
相关的角:
1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。
3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。
4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
角的性质
1、对顶角相等。
2、同角或等角的余角相等。
3、同角或等角的补角相等。
尊敬的校领导、各位家长、亲爱的同学们:
大家好!我是某初中的数学老师,在这里,我要向大家汇报本年度的工作和成果。
一、年度教学工作
本年度,我主要备课和授课目标是:根据教学计划和教科书,积极探索教学内容和教学方法的革新,将传统的数学教学方法与现代教学理念相结合,让学生在掌握基本知识的基础上,注重启发思维、提高学生的数学素养和创新能力。
通过授课,我致力于:借助教具、PPT等,生动形象地呈现数学知识点,使学生不仅对学习的内容感到好奇,而且容易理解和掌握;让学生多动手、多思考、多交流,以此激发学生学习的兴趣和积极性;在每个学科中,开展一些探究活动、案例分析和课程设计,这些活动可以加深学生对某些概念和原理的理解和认识,提高学生分析和解决实际问题的能力。
二、师德师风
在教学工作中,我时刻知道自己是学生心中的榜样,所以在日常教学中,我把严谨和责任融合在一起,全身心地投入到教学中,对所有学生一视同仁、真心关爱每一个孩子,尊重学生、倾听学生、赏识学生,从而促进学生全面发展;同时,注重与同事交流、借鉴,互相支持、帮助,达到更高更优秀的教学水平,传递正能量。
三、学生情况
在教学过程中,我更注重学生情况的关注,每次授课之前,认真阅读***和心理状况,了解每个学生的特点和学习状况,进行差别化教学,注重培养每个学生的特长和优点,从而达到全面发展。
四、学科竞赛
本学年度,在我带领下,参加了多项校级和市级数学竞赛,我充分发挥优秀的教学技巧和团队合作精神,引导和辅导学生,在教学工作之余,指导学生参与各项数学竞赛,取得了很好的`成绩。
五、教学创新研究
本学年度,我积极参加各类学科活动,不断探索和研究教学创新,深入了解各个年级的教学重点和难点,针对不同学情和需求,设计出更好的教学方案和方法,不断追求教学质量的提高,促进学生的全面发展。
六、总结
在本年度的工作中,我充分认识到自己的不足,深入了解了学生的学情和心理,通过各种措施实现了教育教学的全面发展,同时也积累了更多的教学经验,我相信,在以后的工作中,我会不断地总结和反思不足的地方,不断改进自己的工作方式和效率,更好地为学生服务。
最后,衷心感谢家长、学校和同事们在工作中给予的支持和信任,让我更加努力地工作,为学生的全面发展贡献自己的力量。
一、师德方面:加强修养,塑造师德
我始终认为作为一名教师应把“师德”放在一个重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”,这个道理古今皆然。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生,都是一个个大写的“人”。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,课余时间我阅读了大量的书籍,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。
二、教学方面:虚心求教,强化自我
担任两个班的数学教学的工作任务是艰巨的,在实际工作中,那就得实干加巧干。对于一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。随着岁月的流逝,伴着我教学天数的增加,我越来越感到我知识的匮乏,经验的缺少。面对讲台下那一双双渴望的眼睛,每次上课我都感到自己责任之重大。为了尽快充实自己,使自己教学水平有一个质的飞跃,我从以下几个方面对自身进行了强化。
首先是从教学理论和教学知识上。我不但自己订阅了三四种教学杂志进行教学参考,而且还借阅大量有关教学理论和教学方法的书籍,对于里面各种教学理论和教学方法尽量做到博采众家之长为己所用。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。
其次是从教学经验上。由于自己教学经验有限,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。我个人应付和处理课堂各式各样问题的能力大大增强。
最后我做到“不耻下问”教学互长。从另一个角度来说,学生也是老师的“教师”。由于学生接受新知识快,接受信息多,因此我从和他们的交流中亦能丰富我的教学知识。
三、考勤纪律方面
我严格遵守学校的各项规章制度,不迟到、不早退、有事主动请假。在工作中,尊敬领导、团结同事,能正确处理好与领导同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,毫不松懈地培养自己的综合素质和能力。
四、业务进修方面
随着新课程改革对教师业务能力要求的提高,本人在教学之余,还挤时间自学本科和积极学习各类现代教育技术。
五、不足之处
反思一年多的工作,自己在一些细节工作上还存在着不足,特别是学生对作业本的保管、潜能生作业的书写缺乏指导和严格要求。在今后的`工作中,应充分注重工作中的细节,尽量使自己的工作做得扎实。
总之,在这学期的教学工作中收获了很多,提高了很多,同时也感受到了自己的不足。在今后的工作中,应不断提高自己的业务能力、充实自己的业务理论水平、提高自己在学生管理方面的能力、注重细节工作,一如既往的兢兢业业,勤奋钻研,尽量使自己的各项工作做得更扎实、更完善、更有效、更实在。
自然数的分类包括了奇数和偶数,质数与合数、1和0。
自然数的分类
①按能否被2整除分
可分为奇数和偶数。
1、奇 数:不能被2整除的数叫奇数。
2、偶 数:能被2整除的数叫偶数。
注:0是偶数。(20__年国际数学协会规定,零为偶数.我国20__年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。
②按因数个数分
可分为质数、合数、1和0。
1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。
2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。
3、1:只有1个因数。它既不是质数也不是合数。
4、当然0不能计算因数,和1一样,也不是质数也不是合数。
备注:这里是因数不是约数。
同学们对于“0”,它是否包括在自然数之内存在争议,其实学术界目前关于这个问题尚无一致意见。
各级领导对这次研修给予了高度重视和支持。为做好远程研修培训的组织和管理工作,更有效探讨分散学习教学管理的方法,鹿寨教研室于8月15日下午召开参加远程培训的各学科班主任、简报编写组成员会议,会议讨论并确定了对于XX年年秋季远程研修培训的实施方案和班主任工作要求,并对分散学习过程中的一些细节和可能存在的问题,组织各班主任分组进行深入的探讨,各班主任积极发言,为培训顺利开展献计献策,积极寻求解决问题的办法,在思想上和工作环节上都提出了明确的要求,各班级分4个小组学习,小组长“网上检查,电话督促”的工作方法,为XX年年秋季远程研修培训工作顺利的开展提供了有利的保障。紧接着在8月19日下午,初中0602班40多位学员怀着喜悦的心情聚在实验中学会议室召开了XX年年秋季远程研修培训的动员大会。会上,班主任详细讲解了XX年年秋季远程研修培训的学习目的与要求。随后,学员们进行了充分地交流和讨论,大家分担着存在的困难、分享着能参加这个难得的学习机会的喜悦。最后大家表示,一定会合理安排时间,克服一切困难,做到学习、工作两不误。
在学习过程中,班主任通过上网、电话、聊天等途径及时了解各学员的情况,对存在的问题督促其改正,在后阶段发现有的老师没有按时完成作业,就分别给学校领导打电话督促其完成作业,至学习结束我们班全体学员基本都按规定完成了作业(有三个特例除外—这三个老师由于种种原因已经转到其他科目的培训)。对好的现象给予及时表扬,如罗晓萍老师作为我们班的简报编辑员,在第一阶段结束后,自己觉得自己在简报的编辑中还有一些技术性的知识未掌握好,觉得自己所编辑的简报与别人的还有一些差距,于是联系到上一期的简报编辑,利用暑假最后两天时间不远几十公里赶到县城向那位老师请教,回到家后还自己不断地练习排版、编辑图片等等,正是有了她的不懈努力,我们班的简报才能多次进入课程简报中的简报揽胜。
指导老师梁华亮老师在研修过程中,对我们学员的作业及时的批改和鼓励,促使我们班的学员学习热情一直高涨。因此整个学习过程中,我们学员尽管遇到了诸多困难,如停电、电脑上不了网、电脑不够用、遇上上级的各种检查、出差等等,但我们的学员都能想尽办法解决,有的从乡下专程到县城上网学习,有的白天没办法进行学习,就利用深夜时间进行学习,有的甚至买电脑上网专程为远研学习,研修学习已经成为我们生活的.一部分,正如陶玉莲老师在班级交流中说到“越是缺少监督的学习,越是真正意义上的学习。”学员们种种克服困难的办法和精神真的很令我们感动,其中表现比较突出的有:罗晓萍、冯爱英、邓剑、韦水兰、陆汉华等。
正因为有了领导的重视和支持,班主任的跟踪学习,学员们的主动,在研修专家的指导下,我们班的学员在理论知识、学习状态、教学技能上等方面都有了很大的收获,多次得到专家组的好评。在这个知识舞动的平台上,我们所有参加研修的学员们累并快乐着!我们的目标只有一个:为了孩子的明天!
在此我代表我们广西鹿寨县初中数学0602班全体学员对新课程学科远程研修课程团队的专家们表示衷心的感谢!我们鹿寨初中数学教育一定会因为有你们的指导而更精彩!
本学期以来,我们在学校领导的支持下,秉持着“团结合作、互相帮助,多干实事、少说空话”的原则,老师们都勤勤恳恳地工作着。他们不计较个人得失,都具有较强的事业心和责任感。大家都非常好学,不断提升自己的业务水平,精益求精地要求自己的教学,取得了良好的教学效果,深受学生们的欢迎。在本学期,我们出色地完成了学校交给我们的各项任务,主要工作总结如下:
一、认真学习新课程标准,制定教学计划
我们利用科组活动时间加强理论学习和教学研究,始终以理论为指导,明确教育工作的目标。通过学习,我们进一步明白了只有将学生的学习放在教学的首位,抓住重点和难点,才能提高课堂效率。在学习过程中,我们还就教学中遇到的问题进行了热烈的讨论,并根据所任班级的实际情况制定了相应的教研和教学计划。
二、狠抓教学常规,全面提高教学质量
1、加强课堂教学的.常规工作,认真备课,扎实抓好教学各个环节,追求教学质量。在课堂教学中,我们还注重培养学生的创新精神和实践能力。
2、进一步抓好备课和听课工作,完善备课和听课制度。及时评课或与上公开课的老师交换意见,提高每位老师的教学水平。本学期,每个数学老师都上了1节数学公开课,并听课达到了15节以上。
3、认真辅导作业,及时记录作业情况,并提醒存在问题的学生及时改正,逐步提高作业质量。同时,加强作业管理,杜绝学生抄袭作业现象,端正学生的作业态度。
4、注重每一次的月考,认真记录成绩,写好月考评析,并在科组活动上及时交流讨论存在的问题,共同寻找解决方法。
5、注重差生的转化工作,全面提高教学水平。我们采用各种手段激发差生的学习兴趣,通过课外辅导提高他们的学习成绩,基本做到了降低低分率,提高及格率和优秀率。
三、注重教学科研,提高有效教学
1、集体备课常抓不懈,发挥集体的力量和智慧。我们每周一次集体备课时间,每次集体备课前,大家都要先钻研教材内容,然后对教学设计、教学的重难点、例题讲解的深浅程度、习题的选用等发表个人见解和意见,共同学习、研究,取长补短。平时,我们经常互相听课,推荐有收益的教研论文,共同学习、研究,提高教学水平。
2、精心安排青年教师的汇报课和其他教师的示范课,抓好评教工作。对公开课严格把关,要求每节公开课都经过多次备课和研究,每堂公开课后,全科组的老师都进行认真的评课。我们科组的老师对评课一直非常认真,从不避丑,不走过场。大家能本着对事不对人的原则,对有研究性的问题、有争议的问题都能畅所欲言,尽管有时争论激烈,但通过争议,我们都有所收获,推动了科组的教研氛围。
3、加强教育教学理论的学习,坚持撰写教学反思、教学后记、教学体会。积极参加市教育教学论文的评比、课堂教学比赛和说课比赛。我们取得了一些成绩,其中有一位老师获得了市课堂教学三等奖,另一位老师获得了市说课三等奖。
四、加强备考精神,提高中考成绩
对于毕业班的工作,我们作为全科组的重点工作。除了毕业班的四位老师外,其他老师也积极关心毕业班的工作,提出了很多有益的意见和建议,并一起研究和讨论备考工作和复习资料的编写。根据学校的工作计划,本学期初,全体数学老师结合今年的中考方向和学生的实际情况,制定了备考计划,并研究了相应的措施。我们进行了总复习,夯实基础,完善知识框架;强化重点和难点,进行模拟训练;进行套题训练,巩固提高。
一、全新的研修,全新的体验。
20xx年xx月xx日,全省一百多名数学教师齐聚济南,开展为期10天的集中加分散的研修学习。晚上的破冰活动,使每一个人都能感觉到,这100名教师都是全省初中数学界最优秀的代表。这其中有多位齐鲁名师、山东优秀教师、山东创新人物、全国优秀教师、全国课改实验先进教师,更不乏山东教学能手、山东省特级教师、省优质课一等奖获得者等等,很多教师不仅在数学上赫赫有名,也有很多班级管理方面的省级专家。后面的研修,也进一步证明了这是一个扎实务实的教师团队。
各级培训,越来越科学、务实,越来越需要耗费精力,这大家都是早有心理准备的。但本次培训中精力付出之大,还是远远超过了每一个人的预期。对于我来说,很渴望听到专家醍醐灌顶是的指点,也很希望学习别人先进的经验。但开始培训后,却没有和我想象的一样——听报告和观摩优秀课例,而是从一开始就在做任务培训。整个培训都是围绕着一个课例打磨展开和结束的。“三次备课、两轮打磨、4段视频制作、多个文本撰写”,从问题选择到问题澄清,从课例选择到基于研究主题的一次次策划,从教学设计的不断完善到课堂观察量表的细细斟酌,从课堂前台的关注到背后理论的不断深入,从任务分担到共同完成制作。一个不一样的研修,使我们感受到了很多从未有过的体验,给了我们许多不一样的思考和震撼。
二、艰巨的任务,共同的成果。
这次研修,是一次基于提高校本研修实效性的体验式的范例学习,这次研修,是一次基于任务完成的研修。29日上午,高研班举行了简短而又隆重的开班典礼。齐鲁师范学院副院长陈小言、山东省中小学师训干训中心主任毕诗文、副主任刘文华、省中小学教师远程研修项目执行主任蒋敦杰、山东省中小学教师远程研修初中项目主任梁承锋和省基础教育课程研究中心副主任李红婷教授等领导和专家出席了本次高研班开班仪式。开幕式上,专家和领导就明确的指出这次高级研修班的任务是为20xx年全省初中数学教师全员远程研修开发课例资源。
开幕式只有20分钟,很快就进入了任务培训状态。专家的报告大多是指向如何开展工作的,第一天培训就显示了任务的紧张。上午蒋教授的报告《教师研修转型与省骨干高级研修》到12点,下午首都师范大学王尚志教授《初中数学教学几个问题》到5:30,晚上梁承锋教授《20xx初中骨干教师高级研修目标任务与课例研究变式应用》到了10:30尽管专家们都在强调如何开展工作,如何重要和辛苦,我们还是没有进入状态。但王尚志教授的报告,让大家很兴奋,他探讨的问题很实在,和一线教师的思考很接近,我们大多数人都不是第一次听王教授的报告,但看得出这次报告还是给大家带来了很多思考和收益。而且后续的工作证明,王尚志教授的报告给大家的工作起了很好的指导作用。
第二天上午首席专家李红婷教授为大家作了题为《课例研究问题与研究任务——以“课例打磨”为载体的教学改进思路》的报告,李教授从教师培训方式的转型、专家型教师的成长路径、课例与课例设计、课例研究问题与研究问题、观课与评课等几个方面作了深入的解读。下午两位参加过课例研修教师的现身说法,让大家不但明白了基本流程和思路,也意识到了责任之大和任务之重。
伴随着两天的报告,是大家对关注问题的讨论和澄清。很快,我们六个组各自确定了自己的研究主题,并进行了去伪存真式的剥离和澄清,并撰写了各自的研修计划。首席专家李红婷教授的指导是非常重要的,而且贯穿任务全过程。李教授的指导具体、清楚,高屋建瓴而且不厌其烦,从早上到深夜,还处理着一些其他的工作,给大家带来了很大的感动。
更多的时间留给了以小组为单位的工作团队。我们小组由16位教师组成,有四位来自滨州,有三位来自东营,有九位来自烟台。其中由来自烟台市芝罘区教科研中心的林光老师任组长,由来自滨州市北镇中学实验初中部的邢成云老师和莱州市实验中学张延芳老师任指导老师,由来自东营市育才中学的刘江老师任组内专家,根据工作需要,组内又分为4个任务小组。
每一项任务都被分解为几个部分来讨论和撰写,然后再合成讨论,再经指导教师、组内专家把关后,再提交李教授审核,然后再审核定稿。课例打磨计划的制定,让大家完全进入了工作状态,也了解了理论研究、行动研究和载体呈现的重要性。授课任务由烟台三中分校的曲晓媛老师承担,她自我封闭了一天进行独立一备,其他人则对a视频脚本进行了细致的研讨,为便于在网络上呈现这个递进的过程,我们进行了录音和会议记录,想保持这个课例打磨的真实过程。在二备的过程中,大家各抒己见,充分讨论,很快达成了共识,二备很顺利,b脚本也很顺利完成了第一稿。
第一段集中研修,7天很快结束了。我们才发现自己的节奏是那么紧张。基本上是房间、餐厅和工作室,每天从早上到深夜。多数人连楼也没有走出去。第二阶段是分散研修和录课的时间。但每天大家还是第一时间上网交流和学习。尽管录课是在烟台,大家还是克服困难参加了实地的课堂观察。
12月21日,大家重聚济南,进行了观课交流,录制b视频和d视频,完成了网络记录和呈现任务,并撰写了课例学习导引等,最终一个完整的课例打磨资源,在大家的共同努力下顺利完成。回顾整个过程,我们不得不说,每一项工作成果无不都是大家共同智慧的结晶。每个小过程,我们组内都进行详细而明确的分工,而且这种分工特别重视彼此的互助性。每位教师都非常积极认真的完成各自的任务和协助任务。任务是艰巨的,但结果也是令人振奋的。
三、不同的体会,共同的收获。
(一)这次研修,给了大家太多的感慨。
教学设计、上课、听课、评课本是教师最经常的工作,却因没有明确的问题引领,没有客观的观察统计,没有必要的理性思考,没有更深一步的行动和理论跟进,使我们的校本研修摆脱不了低效的困境,也浪费了老师们的时间,也使得大家的水平和课堂教学质量得不到提高。聚焦问题,不仅需要理论的学习和思考,更需要真实、客观和科学的关注,更需要行动研究和逐步的'跟进践行,在坚决问题中,成长自己,促进学生。
(二)这次研修,给了大家太多的感动。
参加研修的教师,大多是学校里的中坚力量,身兼多职,但大家对待这项工作,无不尽心尽力,尤其在当讨论的时候,都愿意把自己的观点拿出来,与别人分享,阐述自己的理由。彼此真诚的交流,常让人有无声处闻惊雷的感觉。与会的工作人员,也都尽可能的为别人服务。各位专家,尤其是李红婷教授更是耐心指导,精益求精。可以说,研修中,每一个人感动着别人的同时,也被别人感动着。雅斯贝尔斯说:“教育就是一朵云推动另一朵云,一棵树摇动另一棵树,一个灵魂唤醒另一个灵魂。”研修也正是这样。我们有理由相信,教育战线上不乏执着的追梦人,不乏具有高尚情怀和追求的教育工作者。
(三)这次研修,给了大家太多的收获。
虽然整个研修,都是围绕任务展开的。但服务他人的同时,更成就的是自己。在课例打磨的过程中,每一位教师都有自己的收获。有的开阔了思路,有的提升了理论,有的净化了心灵。同时,也结交了很多业内同行。其实,同伴的交流是最大的财富。有一种收获,可以穿透时空,长久的留在记忆里,那就是精神的成长和彼此的感动。
(四)这次研修,给了大家更多的思考。
日常教学研究,应该聚焦于教学有关的各类现实存在的问题,应该注意反复开放和聚焦,在解决和研究中,不断提出新的问题和实际的行动跟进研究。
我们感觉到,广大的一线教师都是有强烈的教育责任感、使命感和教育情怀的,对教育教学的追求是大家共同的心愿。通过本次高研班研修,我们认识到其实大道至简,道不远人。
1、一元一次方程根的情况
△=b2-4ac
当△>0时,一元二次方程有2个不相等的实数根;
当△=0时,一元二次方程有2个相同的实数根;
当△<0时,一元二次方程没有实数根
2、平行四边形的性质:
①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:
①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:
①N边形的内角和等于(N-2)180度
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X
加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
一、基本知识
一、数与代数
A、数与式:
1、有理数:①整数→正整数,0,负整数;
②分数→正分数,负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:带上符号进行正常运算。
加法:
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数
无理数
无理数:无限不循环小数叫无理数,例如:π=3.1415926…
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根;0的平方根为0;负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项;②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:
A^M+A^N=A^(M+N)
(A^M)^N=A^(MN
)
(A/B)^N=A^N/B^N
除法一样。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式:A^2-B^2=(A+B)(A-B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
B、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
解二元一次方程组的方法:代入消元法;加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y=0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图像与X轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a
,4ac-b^2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元二次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao
ta”,而△=b2-4ac,这里可以分为3种情况:
I当△>0时,一元二次方程有2个不相等的实数根;
II当△=0时,一元二次方程有2个相同的实数根;
III当△B,则A+C>B+C;
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;
例如:如果A>B,则A-C>B-C;
在不等式中,如果乘以同一个正数,不等式符号不改向;
例如:如果A>B,则A*C>B*C(C>0);
在不等式中,如果乘以同一个负数,不等号改向;
例如:如果A>B,则A*C<B*C(C<0);
如果不等式乘以0,那么不等号改为等号;
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘的数就不等于0,否则不等式不成立;
3、函数
变量:因变量Y,自变量X。
在用图像表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。
②当B=0时,称Y是X的正比例函数。
一次函数的图像:
①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。
②正比例函数Y=KX的图像是经过原点的一条直线。
③在一次函数中,当K〈0,B〈O时,则经234象限;
当K〈0,B〉0时,则经124象限;
当K〉0,B〈0时,则经134象限;
当K〉0,B〉0时,则经123象限。
④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
二空间与图形
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。
②面与面相交得线,线与线相交得点。
③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。
②N棱柱就是底面图形有N条边的棱柱,上下底面就是N边形。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
③将线段的两端无限延长就形成了直线。直线没有端点。
④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。两点之间直线最短。
②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。即:60分为1度,60秒为1分。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角,180。始边继续旋转,当他又和始边重合时,所成的角叫做周角,360。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上;
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的:角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角的角平分线就是到角两边距离相等的点的集合。
性质定理:角平分线上的点到该角两边的距离相等;
判定定理:到角的两边距离相等的点在该角的角平分线上;
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:1、对角线相等的菱形2、邻边相等的矩形
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
——补角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理
三角形两边的和大于第三边
16、推论
三角形两边的差小于第三边
17、三角形内角和定理:
三角形三个内角的和等于180°
18、推论1
直角三角形的两个锐角互余
19、推论2
三角形的一个外角等于和它不相邻的两个内角的和
20、推论3
三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理(
ASA):有两角和它们的夹边对应相等的
两个三角形全等
24、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理(SSS):有三边对应相等的两个三角形全等
26、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1
在角的平分线上的点到这个角的两边的距离相等
28、定理2
到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、推论1
等腰三角形顶角的平分线平分底边并且垂直于底边
31、推论2等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,即三线合一;
32、推论3
等边三角形的各角都相等,并且每一个角都等于60°
33、等腰三角形的判定定理
如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
34、等腰三角形的性质定理
等腰三角形的两个底角相等
(即等边对等角)
35、推论1
三个角都相等的三角形是等边三角形
36、推论
有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理
线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理
和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1
关于某条直线对称的两个图形是全等形
43、定理
如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3
两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理
直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理
四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理
n边形的内角的和等于(n-2)×180°
51、推论
任意多边的外角和等于360°
52、平行四边形性质定理1
平行四边形的对角相等
53、平行四边形性质定理2
平行四边形的对边相等
54、推论
夹在两条平行线间的平行线段相等
55、平行四边形性质定理3
平行四边形的对角线互相平分
56、平行四边形判定定理1
两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2
两组对边分别相等的四边
形是平行四边形
58、平行四边形判定定理3
对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4
一组对边平行相等的四边形是平行四边形
60、矩形性质定理1
矩形的四个角都是直角
61、矩形性质定理2
矩形的对角线相等
62、矩形判定定理1
有三个角是直角的四边形是矩形
63、矩形判定定理2
对角线相等的平行四边形是矩形
64、菱形性质定理1
菱形的四条边都相等
65、菱形性质定理2
菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1
四边都相等的四边形是菱形
68、菱形判定定理2
对角线互相垂直的平行四边形是菱形
69、正方形性质定理1
正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1
关于中心对称的.两个图形是全等的
72、定理2
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理
等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理
在同一底上的两个角相等的梯
形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理
如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论1
经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论2
经过三角形一边的中点与另一边平行的直线,必平分第三边
81、三角形中位线定理
三角形的中位线平行于第三边,并且等于它的一半
82、梯形中位线定理
梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例
87、推论
平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理
如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线,
所截得的三角形的三边与原三角形三边对应成比例
90、定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91、相似三角形判定定理1
两角对应相等,两三角形相似(ASA)
92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理2
两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3
三边对应成比例,两三角形相似(SSS)
95、定理
如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)
96、性质定理1
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理2
相似三角形周长的比等于相似比
98、性质定理3
相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
(a<90)
100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圆是定点的距离等于定长的点的集合
102、圆的内部可以看作是圆心的距离小于半径的点的集合
103、圆的外部可以看作是圆心的距离大于半径的点的集合
104、同圆或等圆的半径相等
105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109、定理
不在同一直线上的三点确定一个圆。
110、垂径定理
垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111、推论1
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧(直径)
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112、推论2
圆的两条平行弦所夹的弧相等
113、圆是以圆心为对称中心的中心对称图形
114、定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理
一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118、推论2
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119、推论3
如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120、定理
圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121、①直线L和⊙O相交
0<=d<r
②直线L和⊙O相切
d=r
③直线L和⊙O相离
d>r
122、切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
123、切线的性质定理
圆的切线垂直于经过切点的半径
124、推论1
经过圆心且垂直于切线的直线必经过切点
125、推论2
经过切点且垂直于切线的直线必经过圆心
126、切线长定理
从圆外一点引圆的两条切线相交与一点,它们的切线长相等
,圆心和这一点的连线平分两条切线的夹角
127、圆的外切四边形的两组对边的和相等
128、弦切角定理
弦切角等于它所夹的弧对的圆周角?
129、推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130、相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论
如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项?
133、推论
从圆外一点引圆的两条割线,这一点到每条
割线与圆的交点的两条线段长的积相等
134、如果两个圆相切,那么切点一定在连心线上
135、①两圆外离
d>R+r
②两圆外切
d=R+r
③两圆相交
R-r<d<R+r(R>r)
④两圆内切
d=R-r(R>r)
⑤两圆内含
d<R-r(R>r)
136、定理
相交两圆的连心线垂直平分两圆的公共弦
137、定理
把圆平均分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138、定理
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139、正n边形的每个内角都等于(n-2)×180°/n
140、定理
正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141、正n边形的面积Sn=pn*rn/2
p表示正n边形的周长
142、正三角形面积√3a^2/4
a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144、弧长计算公式:L=n兀R/180——》L=nR
145、扇形面积公式:S扇形=n兀R^2/360=LR/2
146、内公切线长=d-(R-r)
外公切线长=d-(R+r)
一元一次方程定义
通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。
一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。
即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1;⑷含未知数的项的系数不为0。
一元一次方程的五个核心问题
一、什么是等式?1+1=1是等式吗?
表示相等关系的式子叫做等式,等式可分三类:第一类是恒等式,就是用任何允许的数值代替等式中的字母,等式的两边总是相等,由数字组成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二类是条件等式,也就是方程,这类等式只能取某些数值代替等式中的字母时,等式才成立,如x+y=-5,x+4=7等都是条件等式;第三类是矛盾等式,就是无论用任何值代替等式中的字母,等式总不成立,如x2=-2,|a|+5=0等。
一个等式中,如果等号多于一个,叫做连等式,连等式可以化为一组只含有一个等号的等式。
等式与代数式不同,等式中含有等号,代数式中不含等号。
等式有两个重要性质1)等式的两边都加上或减去同一个数或同一个整式,所得结果仍然是一个等式;(2)等式的两边都乘以或除以同一个数除数不为零,所得结果仍然是一个等式。
二、什么是方程,什么是一元一次方程?
含有未知数的等式叫做方程,如2x-3=8,x+y=7等。判断一个式子是否是方程,只需看两点:一是不是等式;二是否含有未知数,两者缺一不可。
只含有一个未知数,并且含未知数的式子都是整式,未知数的次数是1,系数不是0的方程叫做一元一次方程。其标准形式是ax+b=0(a不为0,a,b是已知数),值得注意的是1)一个整式方程的"元"和"次"是将这个方程化成最简形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化简后,它实际上是一个一元一次方程。(2)整式方程分母中不含有未知数。判断是否为整式方程,是不能先将它化简的如方程x+1/x=2+1/x,因为它的分母中含有未知数x,所以,它不是整式方程。如果将上面的方程进行化简,则为x=2,这时再去作判断,将得到错误的结论。
凡是谈到次数的方程,都是指整式方程,即方程的两边都是整式。一元一次方程是整式方程中元数最少且次数最低的方程。
三、等式有什么牛掰的基本性质吗?
将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项,移项的依据是等式的基本性质1。
移项时不一定要把含未知数的项移到等式的左边。如解方程3x-2=4x-5时就可以把含未知数的项移到右边,而把常数项移到左边,这样会显得简便些。
去分母,将未知数的系数化为1,则是依据等式的基本性质2进行的。
四、等式一定是方程吗?方程一定是等式吗?
等式与方程有很多相同之处。如都是用等号连接的,等号左、右两边都是代数式,但它们还是有区别的。方程仅是含有未知数的等式,是等式中的特例。就是说,等式包含方程;反过来,方程并不包含所有的等式。如,13+5=18,18-13=5都属于等式,但它们并不是方程。因此,等式一定是方程的说法是不对的。
五、"解方程"与"方程的解"是一回事儿吗?
方程的解是使方程左、右两边相等的未知数的取值。而解方程是求方程的解或判断方程无解的过程。即方程的解是结果,而解方程是一个过程。方程的解中的"解"是名词,而解方程中的"解"是动词,二者不能混淆。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。