高一数学教学计划优秀汇编31篇

高一数学教学计划优秀(精选31篇)

高一数学教学计划优秀 篇1

一、教学目标、

(一)情意目标

(1)经过分析问题的方法的教学,培养学生的学习的兴趣。

(2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)本事要求

1、培养学生记忆本事。

(1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。

2、培养学生的运算本事。

(1)经过概率的训练,培养学生的运算本事。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。

(3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。

(4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算本事。

3、培养学生的思维本事。

(1)经过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

(2)经过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维本事。

(3)经过不等式、函数的引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的本事。

(5)经过典型例题不一样思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

(三)知识目标

1、集合、简易逻辑

(1)理解集合、子集、补订、交集、交集的概念、了解空集和全集的意义、了解属于、包含、相等关系的意义、掌握有关的术语和符号,并会用它们正确表示一些简单的集合、

(2)理解逻辑联结词"或"、"且"、"非"的含义、理解四种命题及其相互关系、掌握充分条件、必要条件及充要条件的意义、

(3)掌握一元二次不等式、绝对值不等式的解法。

2、函数

(1)了解映射的概念,理解函数的概念、

(2)了解函数的单调性、奇偶性的概念,掌握确定一些简单函数的单调性、奇偶性的方法、

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数、

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质、掌握指数函数的概念、图像和性质、

(5)理解对数的概念,掌握对数的运算性质、掌握对数函数的概念、图像和性质、

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题、

3、数列

(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项、

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简

单的实际问题、

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题、

二、教学重点

1、集合、子集、补集、交集、并集、一元二次不等式的解法

四种命题、充分条件和必要条件、

2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用、

3、等差数列及其通项公式、等差数列前n项和公式、

等比数列及其通项公式、等比数列前n项和公式、

三、教学难点

1、四种命题、充分条件和必要条件

2、反函数、指数函数、对数函数

3、等差、等比数列的性质

四、工作措施、

1、抓好课堂教学,提高教学效益。

课堂教学是教学的主要环节,所以,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

(1)、扎实落实团体备课,经过团体讨论,抓住教学资料的实质,构成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

(2)、加大课堂教改力度,培养学生的自主学习本事。最有效的学习是自主学习,所以,课堂教学要大力培养学生自主探究的精神,经过“知识的产生,发展”,逐步构成知识体系;经过“知识质疑、展活”迁移知识、应用知识,提高本事。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

高一数学教学计划优秀 篇2

一、指点思想:

在九年义务教育数学课程的根底上,进一步领会数学对开展本身思想才能的作用,领会数学对推进社会提高和迷信开展的意义以及数学的文明价值,进步做为将来公民所必要的数学素养,以满足本人开展与社会提高的需求。

二、教学详细目的

1、取得必要的数学根底知识和根本技艺,了解根本的数学概念、数学结论的实质,理解概念、结论等发生的背景、使用,领会其中所蕴涵的数学思想和办法,以及它们在后续学习中的作用。经过不同方式的自主学习、探求活动,体会数学发现和缔造的历程。

2、进步空间想像、笼统概括、推实际证、运算求解、数据处置等根本才能。

3、进步数学地提出、剖析和处理Issue(问题)(包括容易的实践Issue(问题))的才能,数学表达和交流的才能,开展独立获得数学知识的才能。

4、开展数学使用认识和创新认识,力争对理想世界中蕴涵的少许数学形式实行思考和作出判别。

5、进步学习数学的兴致,树立学好数学的决心,构成锲而不舍的研究肉体和迷信态度。

6、具有一定的数学视野,逐渐认得数学的迷信价值、使用价值和文明价值,构成批判性的思想习气,崇尚数学的感性肉体,领会数学的美学意义,从而进一步树立辩证唯心主义和历史唯心主义世界观。

三、教材特点:

我们所运用的教材是北师大版《普通高中课程规范实验教科书·数学1(?)》,它在坚持我国数学教育优秀保守的前提下,仔细处置承继,借签,开展,创新之间的关系,强调了Issue(问题)提出,笼统概括,剖析了解,思考交流等探讨性学习进程。详细特点如下:

1、“亲和力”:以生动生动的展现方式,激起兴致和美感,引发学习热情。

2、“Issue(问题)性”:专门布置了“课题学习”和“探求活动”,培育Issue(问题)认识,孕育创新肉体。

3、“迷信性”与“思想性”:经过不同数学内容的联络与启示,强调类比,推行,特别化,化归等思想办法的运用,学习数学地思考Issue(问题)的方式,进步数学思想才能,培育感性肉体。

4、“时代性”与“使用性”:教材中有“信息技巧提议”和“信息技巧使用”,以具有时代性和理想感的素材创设情境,增强数学活动,开展使用认识。

5、“人文使用价值性”:编写了少许阅读资料,开辟先生视野,从数学史的开展脚印中获得养分和动力,片面感受数学的迷信价值、使用价值和文明价值。

四、教法剖析:

1、选取与内容亲密相干的,典型的,丰厚的和先生熟习的素材,用生动生动的言语,创设可以表现数学的概念和结论,数学的思想和办法,以及数学使用的学习情境,使先生发生对数学的亲切感,引发先生“看个终究”的激动,以到达培育其兴致的目的。

2、经过“察看”,“思考”,“探求”等栏目,引发先生的思考和探究活动,实在改良先生的学习方式。

3、在教学中强调类比,推行,特别化,化归等数学思想办法,尽能够养成其逻辑思想的习气。

五、教学措施:

1、激起先生的学习兴致。由数学活动、故事、吸引人的课、合理的请求、师生说话等途径树立先生的学习决心,进步学习兴致,在客观作用下上升和提高。

2、留意从实例动身,从理性进步到感性;留意运用比照的办法,重复比拟相近的概念;留意联合直观图形,解释笼统的知识;留意从已有的知识动身,启示先生思考。

3、增强培育先生的逻辑思想才能就处理实践Issue(问题)的才能,以及培育进步先生的自学才能,养成擅长剖析Issue(问题)的习气,实行辨证唯心主义教育。

4、抓住公式的推导和内在联络;增强温习检验任务;抓住典型例题的剖析,讲清解题的关键和根本办法,注重进步先生剖析Issue(问题)的才能。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法

6、注重数学使用认识及使用才能的培育。

六、教学进度布置

依据县局一致布置。

高一数学教学计划优秀 篇3

Ⅰ.教学内容解析

本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.

这是指数函数在本章的位置.

指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.

指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.

Ⅱ.教学目标设置

1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.

2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.

3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.

4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.

Ⅲ.学生学情分析

授课班级学生为南京师大附中实验班学生.

1.学生已有认知基础

学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.

2.达成目标所需要的认知基础

学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.

3.难点及突破策略

难点:1. 对研究函数的一般方法的认识.

2. 自主选择底数不当导致归纳所得结论片面.

突破策略:

1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.

2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.

3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.

Ⅳ.教学策略设计

根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.

学生的自主学习,具体落实在三个环节:

(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.

(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.

(3)性质应用阶段,学生自主举例说明指数函数性质的应用.

研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.

Ⅴ.教学过程设计

1.创设情境建构概念

师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?

师:大家知道细胞分裂的规律吗?(出示情境问题)

[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.

师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.

[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.

[教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.

方案1:

生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

生:函数y=0.5x,y= x,y=(-2)x,y=1x…

师:板书学生举例(停顿),好像有不同意见.

生:底数不能取负数.

师:为什么?

生:如果底数取负数或0,x就不能取任意实数了.

师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.

(若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)

师:这些函数有什么共同特点?

生:都有指数运算.底数是常数,自变量在指数位置.

(若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)

师:具备上述特征的函数能否写成一般形式?

生:可以写成y=ax(a>0).

师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

方案2:

生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

生:函数y=0.5x,y= x,…

师:这些函数的自变量是什么?它们有什么共同特点?

生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.

师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?

生:底数不能取负数.

师:为什么?

生:如果底数取负数或0,x就不能取任意实数了.

师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

[阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.

[意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.

2.实验探索汇报交流

(1)构建研究方法

师:我们定义了一个新的函数,接下来,我们研究什么呢?

生:研究函数的性质.

〖问题2你打算如何研究指数函数的性质?

[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.

[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.

[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.

师:(稍等片刻)我们一般要研究哪些性质呢?

生:变量取值范围(定义域、值域)、单调性、奇偶性.

师:(板书学生回答)怎样研究这些性质呢?

生:先画出函数图象,观察图象,分析函数性质.

生:先研究几个具体的指数函数,再研究一般情况.

师:板书“画图观察”,“取特殊值”

(若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)

(若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))

[意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.

(2)自主探究汇报交流

师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.

〖问题3选取数据,画出图象,观察特点,归纳性质.

[设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.

由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.

数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.

[师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.

[教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.

生:自主选择数据,在坐标纸上列表作图,列出函数性质.

师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)

生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.

师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?

师:(用彩笔描粗图象,故意出错)错在哪里?为什么?

生:指数函数是单调递增的,过定点(0, 1).

师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).

师:指数函数还有其它性质吗?

师:也就是说值域为(0, +∞).

生:指数函数是非奇非偶函数.

师:有不同意见吗?

生:当0

(其它预设:

(1)当a>1时,若x>0,则y>1;若x1.

欲知谁正确,让我们一起来观察、研探.

思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R.

类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)

推进新课

提出问题

(1)观察下面几个例子:

①A={1,2,3},B={1,2,3,4,5};

②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;

③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};

④E={2,4,6},F={6,4,2}.

你能发现两个集合间有什么关系吗?

(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?

(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?

(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?

(5)试用Venn图表示例子①中集合A和集合B.

(6)已知A?B,试用Venn图表示集合A和B的关系.

(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?

(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?

(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?

活动:教师从以下方面引导学生:

(1)观察两个集合间元素的特点.

(2)从它们含有的元素间的关系来考虑.规定:如果A B,但存在x∈B,且x A,我们称集合A是集合B的真子集,记作A B(或B A).

(3)实数中的“≤”类比集合中的 .

(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.

(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.

(6)分类讨论:当A B时,A B或A=B.

(7)方程x2+1=0没有实数解.

(8)空集记为 ,并规定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).

(9)类比子集.

讨论结果:

(1)①集合A中的元素都在集合B中;

②集合A中的元素都在集合B中;

③集合C中的元素都在集合D中;

④集合E中的元素都在集合F中.

可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

(2)例子①中A B,但有一个元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

(3)若A B,且B A,则A=B.

(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.

(5)如图1121所示表示集合A,如图1122所示表示集合B.

图1-1-2-1 图1-1-2-2

(6)如图1-1-2-3和图1-1-2-4所示.

图1-1-2-3 图1-1-2-4

(7)不能.因为方程x2+1=0没有实数解.

(8)空集.

高一数学教学计划优秀 篇4

一、学生状况分析

学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习进取性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

二、教材分析

使用北师大版《普通高中课程标准实验教科书·数学》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可理解性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。

三、教学任务

本期授课资料为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成);必修2在期末考试前完成(约在12月31日前完成)。

四、教学质量目标

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本本事。

3、提高学生提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

五、促进目标达成的重点工作

认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要资料,坚持“抓两头、带中间、整体推进”,使每个学生的数学本事都得到提高和发展。

教学方法及推进措施

六、相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,梦想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,应对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际本事出发,研究学生的心理特征,做好初三与高一的衔接工作,帮忙学生解决好从初中到高中学习方法的过渡。从高一齐就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点资料,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,本事要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

(3)培养学生解答考题的本事,经过例题,从形式和资料两方应对所学知识进行本事方面的分析,引导学生了解数学需要哪些本事要求。

(4)让学生经过单元考试,检测自我的实际应用本事,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)重视数学应用意识及应用本事的培养。

(7)重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

(8)合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

(9)加强培养学生的逻辑思维本事和解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

(10)抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

(11)自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不一样的教材资料选择不一样教法,提倡创新教学方法,把学生被动理解知识转化主动学习知识。

七、教学进度安排:

(略)

高一数学教学计划优秀 篇5

一、学情分析

我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上进取创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。

二、教材分析

本教材有下列几个特点:

1、更加注重强调数学知识的实际背景和应用,使教材具有很强的“亲和力”,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,使学生兴趣盎然地投入学习。

2、以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都能够看到“观察”“思考”“探索”以及用“问号性”图标呈现的“边空”等栏目,利用这些栏目,在知识形过过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。

3、信息技术是一种强有力的认识工具,在教材的编写过程体现了进取探索数学课程与信息技术的整合,帮忙学生利用信息技术的力量,对数学的本质作进一步的理解。

4、关注学生数学发展的不一样需求,为不一样学生供给不一样的发展空间,促进学生个性和潜能的发展供给了很好的平台。例如教材经过设置“观察与猜想”、“阅读与思考”、“探究与发现”等栏目,一方面为学生供给了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化提高中的作用。

5、新教材注重数学史渗透,异常是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。

三、教学任务与目的

1、了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依靠关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不一样需要选择恰当的方法表示函数。

经过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。

2、了解指数函数模型的实际背景。理解有理指数幂的含义,经过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的'图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。

理解对数的概念及其运算性质,明白用换底公式能将一般对数转化成自然对数或常用对数;经过阅读材料,了解对数的发现历史以及对简化运算的作用。经过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。明白指数函数y=ax与对数函数y=logax互为反函数(a》0,a≠1)。经过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1x,y=x12的图象,了解它们的变化情景。

3、结合二次函数的图象,确定一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系、根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法、利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不一样函数类型增长的含义、收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。

4、利用实物模型、计算机软件观察很多空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

经过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不一样表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

5以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。经过对很多图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维本事,并用来解决一些简单的推理论证及应用问题、

6、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。

根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

四、教学措施和活动

1、加强团体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。

2、注重培养学生自主学习的本事,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和本事。改善学生的学习方式是高中数学新课程追求的基本理念。

3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。

4、与学生多沟通、多交流,真正成为学生的良师益友。

5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

高一数学教学计划优秀 篇6

一、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

二、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

三、教学内容

第一章集合与函数概念

1.通过实例,了解集合的含义,体会元素与集合的属于关系。

2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

3.理解集合之间包含与相等的含义,能识别给定集合的子集。

4.在具体情境中,了解全集与空集的含义。

5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

10.通过具体实例,了解简单的分段函数,并能简单应用。

11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

12.学会运用函数图象理解和研究函数的性质。

课时分配(14课时)

第二章基本初等函数(I)

1.通过具体实例,了解指数函数模型的实际背景。

2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

3、理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

5、理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

6、通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

课时分配(15课时)

第三章函数的应用

1、结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

2、利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

3、收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

4、根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

课时分配(8课时)

高一数学教学计划优秀 篇7

(1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

学情分析及相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

教学进度安排:

周 次 时 内 容 重 点、难 点

第1周

9.2~9.6 5 集合的含义与表示、

集合间的基本关系、

会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念

第2周

9.7~9.13 5 集合的基本运算

函数的概念、

函数的表示法 能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用

第3周

9.14~9.20 5 单调性与最值、

奇偶性、实习、小结 学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义

第4周

9.21~9.27 5 指数与指数幂的运算、

指数函数及其性质 掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念

第5周

9.28~10.4 5 (9月月考?、国庆放假)

第6周

10.5~10.11 5 对数与对数运算、

对数函数及其性质 理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数

第7周

10.12~10.18 5 幂函数 从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质

第8周

10.19~10.25 5 方程的根与函数零点,

二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解;

第9周

10.26~11.1 5 几类不同增长的模型、函数模型应用举例 对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义

第10周

11.2~11.8 期中复习及考试 分章归纳复习+1套模拟测试

第11周

11.9~11.15 5 任意角和弧度制

任意角的三角函数 了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义

第12周

11.16~11.22 5 三角函数的诱导公式

三角函数的图像和性质 借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性

第13周

11.23~11.29 5 函数y=Asin(wx+q)的图像 借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响

第14周

11.30~12.6 5 三角函数模型的简单应用 单元考试 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型

第15周

12.7~12.13 5 平面向量的实际背景及基本概念,平面向量的线性运算 掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算

第16周

12.14~12.20 5 平面向量的基本定理及坐标表示,平面向量的数量积, 理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系

第17周

12.21~12.27 5 平面向量应用举例,

小结 用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力

第18周

12.28~1.3 5 两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系

第19周

1.4~1.10 5 简单的三角恒等变换

高一数学教学计划优秀 篇8

一、教材分析(结构系统、单元内容、重难点)

必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用。

必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系。

二、学生分析(双基智能水平、学习态度、方法、纪律)

较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

三、教学目的要求

1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。

2、通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

3、理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。

4、几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

四、完成教学任务和提高教学质量的具体措施

积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

五、教学进度

略。

高一数学教学计划优秀 篇9

一、制定的依据

随着高一新教材的全面实施,本年级数学学科的教学进入了新课程改革实际阶段,

高一数学教学计划

本计划制定的依据主要是以下三个:

(1)二期课改的理念:一个为本、三类课程、三维目标

(2)新数学课程标准

(3)三本书:课本、教参、练习册

(4)本校教研组对本学期学科的要求

二、基本情况分析

高一(3)全班共52人,男生24人,_28人。上学期期末为区统测,平均分为54.1分,合格率为5%,优秀率为0%,低分率为56%。高一(4)全班共53人,男生26人,_27人。上学期期末为区统测,平均分为50.3分,合格率为3%,优秀率为0%,低分率为62%。从上学期期末统测来看,我班的学生在数学学习上可以说既有优势也有不足。

优势是:

1、有潜力;

2、师生关系比较融洽,互相信任,配合默契。

存在的不足是:

1、聪明有余,而努力不足;

2、男生聪明,上课积极,但不够勤奋、踏实;认真,但上课效率不高,学得不够灵活。

3、从期末统测来看,差生的比重大;

4、个别学生懒惰成性,学习态度、学习习惯极差;

5、平时学习不够用心,自觉,专心思考、钻研的时间太少;

6、一些同学学习成绩起伏大,不稳定;

7、一些好学生满足现状,骄傲自满,思想放松,导致成绩退步;

8、学习兴趣,动力,上进心不足。

三、本学期力争达到的目标

1、完成三类课程的教学任务。基础性课程要扎扎实实,夯实基础;拓展性课程要适当延伸和补充,进一步提高学生的能力和水平;研究性课程要重过程,不重结果,培养学生自主学习,探索研究的习惯与品质。

2、完成新数学课程标准规定的教学目标。

3、进一步规范学生的学习习惯(包括预习、上课、作业、复习等)。

4、转化学困生,提高成绩。有些学生成绩总是上不去,以为不是块读数学的料,久而久之,产生放弃数学,讨厌数学的心理。由此,我在学习中,要多方面激发其学习兴趣,耐心指导,不断激励。让其感受到成功的喜悦,增强自信心,让其喜欢数学,找到学习数学的乐趣。

5、一手提高优秀率,一手减少不及格人数,力争班与班之间无明显差距。

四、具体措施

1、从期末统测来看,学困生的比重大,优秀率没有。为此要进行分层教学,学困生要注重基本题、常规题的反复操练,增强他们对数学学习的信心和兴趣。好学生要避免无谓失分的情况,注重数学思想、方法、能力的培养,着眼于高三。总而言之,学困生还是继续注重双基的训练,将做过,讲过的题目再反复操练。另外也不能忽略了高分学生的培养,给好学生布置一些有质量的课外题,定期查阅,批改,答疑。这样,通过抓两头,促中间,带动整体水平的提高。

2、提高教学质量,要抓好课堂教学这一主阵地。根据课程标准,教参,切实落实教学目标,做到全面不遗漏,要以考纲为标准。另外,每节课要安排必要的练习时间,多安排随堂测试是有好处的。试题讲解时要突出方法,突出思考、分析过程,要暴露学生解题过程中思维、概念、计算等方面的错误,对学生的错误要有针对性的矫正,补偿。不就题讲题,注意适当的变式。帮助学生掌握解题的方法,积累解题经验,课后要引导学生进行反思、订正,以加深对概念的理解,方法的掌握。

3、从期末统测看学生应用能力明显不足。教师要通过平时教学培养学生阅读审题、数学建模的能力。让学生熟悉一些常见的实际问题的背景,及解决这些问题的相关数学知识。

4、期末统测中选择题普遍得分不高,应引起我们的重视。

5、注重讲练结合。要多安排课堂练习,当堂检测。当日作业,周练,月考要及时安排时间进行讲评。平时要注意练习的有效性(适当题量,恰当难度,精选精练),规范书写,认真批改,及时讲评,反馈矫正(建立错题集,进行再认识)。坚决反对只练不讲,只讲不练。评讲中要针对学生的错因进行分析,找出存在的问题,有针对性地加以弥补缺漏,发现问题要跟踪到题,跟踪到人。本次统测中许多试题平时讲过,练过,考过,但错误仍然很多,值得我们重视与反思。

五、保障措施和可行性

1、关爱学生,严格要求,用情实现师与生的沟通,用景实现教与学的融合;

2、加强基础知识、基本技能、基本方法的教学和基本能力的培养,精心组织教学内容,难度要适当,要追求最有效的训练,要清楚哪些学生需要哪些训练,切实注重部分学生的补差和提高,关注全体学生的学,基本教学要求要有效落实到位;

3、注重加强知识之间的联系和综合,内容和方式要更新,有层次推进,多角度理解,反思总结,重视教与学的方式多样化;

4、激发兴趣,重视过程教学,重视错误分析型学习;

5、重视开放性、研究性问题的教学,关注主观评判性问题的学习,研究新题型,真正发展学生的数学素质,培养其数学能力。

6、结合二期课改新课程标准、教参,扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

7、加大课堂教改力度,培养学生的自主学习能力。

8、加强课外辅导,利用中午和晚间休息时间辅导学生答疑解惑、找学生谈话等等。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

9、搞好单元考试、阶段性考试的分析。学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解,过关。

10、学生除配套练习册外,每人订一本《一课一练》作为补充练习,并要求每周写学习感悟与学习疑惑,每人准备一本错题本收集错题,每人在课本留白处做好课堂笔记。另外,我自己有充足的时间与资料,进行习题精选与练习补充。

六、总目标达成度与现阶段教学目标达成度的相关分析

本学期一定要在如何提高课堂效率上下功夫,同时抓平时的学习习惯,学习规范,作业质量等细节问题,切实提高学习的有效性。另外,在上学期的基础上,本学期力争消灭不及格,并使那些因无谓失分而导致分数起伏不定的学生能稳定下来,从而进一步提高优秀率。目前,我班面临的困难与问题还非常多,好在学生的学习势头保持良好。我和我们班的全体学生,将尽我们所能,力争在本学期能有所收获,更进一步。

七、课堂教学改革与创新、信息技术的应用与整合

1、结合二期课改,将“接受式学习”变为“主动式学习”,“启发式学习”,将“要我学”变为“我要学”,并积极开展拓展性课程,研究性课程,培养学生的创新精神和实践能力。

2、加强基础训练,但要避免“题海”战术,要精讲精练,举一反三,突出方法,总结经验,采取变式训练,专题训练等多种方式。

3、针对本学期三角公式多的特点,设计一些学生学习支持材料,如公式默写表,公式背诵口诀,公式记忆方法,公式小卡片等。

4、借助“TI图形计算器”强大的图形功能以及多媒体教学设备,制作精美课件,辅助教学,使教学内容更加形象直观,通俗易懂。

5、利用“Bb”系统建设e课堂,建设网络学习包。

6、写数学感悟或一周问题,与学生进行书面讨论交流,答疑解惑,给予学法指导。

7、对不同层次的学生进行分层辅导,分层补充课外练习。

8、进行数学演讲,了解数学史,写写数学周记等,提升学生的数学素养与兴趣。

高一数学教学计划优秀 篇10

本学期担任高一X1、X2两班的数学教学工作,两班学生共有X人,通过一期的高中学习,学习能力更加参差不齐,但两个班的学生整体水平较高;部分学生学习习惯不好,不能正确评价自己,这给教学工作带来了一定的难度,特别X1班部分同学学习方法问题严重:只做,不归纳总结,学习效率低。学校要求高,教学任务艰巨。为把本学期教学工作做好,制定如下教学工作计划

一、教学目标.

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。(3)在探究三角函数、平面向量,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)能力要求

1、培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示弧度、向量有关概念、三角公式和三角函数的图象,培养记忆能力。

2、培养学生的运算能力。

(1)通过三角函数求值与化简问题的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过三角函数、平面向量的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生的思维能力。

(1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)通过三角函数、函数有关性质的引伸、推广,培养学生的创造性思维。

(4)加强知识的横向联系,培养学生的数形结合的能力。

(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

(三)知识目标

二、教学要求

(一)三角函数

1理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算.

2掌握任意角的正弦、余弦、正切的定义.并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式.

3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力

4能正确运用三角公式,进行简单三角函数式的化简、求值及恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆).

5.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象.并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义;了解奇偶函数的意义;并通过它们的图象理解正弦函数、余弦函数、正切函数的性质以及简化这些函数图象的绘制过程;会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图.理解A,ω、φ的物理意义.

6.会由已知三角函数值求角.并会用符号arcsinx、arccosx、arctanx表示角。

(二)平面向量

1理解向量的概念,掌握向量的几何表示,了解共线问量的概念

2掌握向量的加法与减法

3掌握实数与向量的积,理解两个向量共线的充要条件

4了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

5掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件

6掌握平面两点间的距离公式,掌握线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式

7掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的汁算问题通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力

8通过“实习作业解三角形在测量中的应用”,提高应用数学知识解决实际问题的能力和实际操作的能力

9通过“研究性学习课题:向量在物理中的应用”,学会提出问题,明确探究方向,体验数学活动的过程·培养创新精神和应用能力,学会交流.

三、教学重点

1、掌握同角三角函数的基本关系式

2.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;3.用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图。

4.掌握向量的加法与减法,掌握平面向量的坐标运算.掌握实数与向量的积,理解两个向量共线的充要条件。掌握正弦定理、余弦定理,并能运用它们解斜三角形

四、教学难点

1.函数y=Asin(ωx+φ)的简图

2.会用与单位圆有关的三角函数线画正弦函数、正切函数的图象

3.掌握正弦定理、余弦定理,并能运用它们解斜三角形

五、工作措施.

1、抓好课堂教学,提高教学效益。

课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。

(2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

2、加强课外辅导,提高竞争能力。

课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

(1)加强数学数学竞赛的指导,提高学习兴趣。

(2)加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一城楼。

(2)、加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别加集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。

3、搞好单元考试、阶段性考试的分析。

学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生纠错。在分析过程中要遵循自主的思维习惯,使学生真正理解。

六、进度安排.

第四章三角函数

§4.1角的概念的推广………………………………………………………………………………2课时

§4.2弧度制…………………………………………………………………………………………2课时

§4.3任意角的三角函数……………………………………………………………………………2课时

§4.4同角三角函数的关系…………………………………………………………………………2课时

§4.5诱导公式………………………………………………………………………………………2课时

§4.6两角和与差三角函数…………………………………………………………………………7课时

§4.7二倍角公式……………………………………………………………………………………3课时

§4.8三角函数的图象与性质………………………………………………………………………4课时

§4.9函数y=sin(ωx+φ)的图象…………………………………………………………………3课时

§4.10正切函数的图象与性质………………………………………………………………………3课时

§4.11给值求角………………………………………………………………………………………4课时

第五章平面向量…………………

§5.1向量……………………………………………………………………………………………1课时

§5.2向量的加法及减法……………………………………………………………………………2课时

§5.3实数与向量的积………………………………………………………………………………2课时

§5.4平面向量的坐标运算…………………………………………………………………………2课时

§5.5线段的定比分点………………………………………………………………………………2课时

§5.6平面向量的坐标运算…………………………………………………………………………2课时

§5.7平面向量的数量积及运算律…………………………………………………………………2课时

§5.8平面向量数量积的坐标表示…………………………………………………………………2课时

§5.9正弦定理、余弦定理…………………………………………………………………………2课时

§5.10解斜三角形应用举例…………………………………………………………………………2课时

§5.11实习作业………………………………………………………………………………………2课时

第六章不等式…………………

§6.1不等式的性质…………………………………………………………………………………3课时

§6.2均值定理………………………………………………………………………………………2课时

§6.3不等式的证明…………………………………………………………………………………6课时

§6.4不等式的解法…………………………………………………………………………………3课时

期末复习20课时

高一数学教学计划优秀 篇11

一、教材分析(结构系统、单元内容、重难点)

必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;

必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;

二、学生分析(双基智能水平、学习态度、方法、纪律)

较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

三、教学目的要求

1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。

2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。

4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

四、完成教学任务和提高教学质量的具体措施

积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

五、教学进度

周次

课、章、节

教 学 内 容

备 注

1

1.1,1.2

解三角形

2

1.2

解三角形

3

2.1,2.2

数列的概念与简单表示法,等差数列

4

2.3

等差数列的前n项和

5

2.4,2.5

等比数列及前n项和

6

2.5

考试

7

3.1,3.2

不等关系与不等式,一元二次不等式及其解法

8

3.3,3.4

二元一次不等式(组)与简单线性规划问题,基本不等式

9

考试,复习

10

期中考试

11

1.1,1.2

空间几何体的结构,三视图,直观图

12

1.3

空间几何体的表面积与体积

13

2.1,2.2

空间点、直线、平面的位置关系,直线、平面平行的判定及其性质

14

2.3

直线、平面的判定及其性质

15

3.1,3.2

直线的倾斜角与斜率,直线方程

16

3.3

直线的交点坐标与距离公式

17

4.1,4.2

圆的方程,直线、圆的位置关系

18

4.3

空间直角坐标系

19

复习

20

考试

21

22

高一数学教学计划优秀 篇12

一.学情分析

我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。

二.教材分析

本教材有下列几个特点:

1、更加注重强调数学知识的实际背景和应用,使教材具有很强的“亲和力”,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,使学生兴趣盎然地投入学习。

2. 以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神,体现了问题性,本套教材的一个很大特点是每一章都可以看到“观察”“思考”“探索”以及用“问号性”图标呈现的“边空”等栏目,利用这些栏目,在知识形过过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题,以引导学生的数学探究活动,切实转变学生的学习方式。

3. 信息技术是一种强有力的认识工具,在教材的编写过程体现了积极探索数学课程与信息技术的整合,帮助学生利用信息技术的力量,对数学的本质作进一步的理解。

4.关注学生数学发展的不同需求,为不同学生提供不同的发展空间,促进学生个性和潜能的发展提供了很好的平台。例如教材通过设置“观察与猜想”、“阅读与思考”、“探究与发现”等栏目,一方面为学生提供了一些关于探究性、拓展性、思想性、时代性和应用性的选学材料,拓展学生的数学活动空间和扩大学生的数学知识面,另一方面也体现了数学的科学价值,反映了数学在推动其他科学和整个文化进步中的作用。

5. 新教材注重数学史渗透,特别是注重介绍我国对数学的贡献,充分体现数学的人文价值,科学价值和文化价值,激发了学生的爱国主义情感和民族自豪感。

三. 教学任务与目的

1.了解集合的含义与表示,理解集合间的关系和运算,感受集合语言的意义和作用。进一步体会函数是描述变量之间的依赖关系的重要数学模型,会用集合与对应的语言描述函数,体会对应关系在刻画函数概念中的作用。了解函数的构成要素,会求简单函数定义域和值域,会根据实际情境的不同需要选择恰当的方法表示函数。

通过已学过的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性的含义,会用函数图象理解和研究函数的性质。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、欧拉等)的有关资料,了解函数概念的发展历程。

2. 了解指数函数模型的实际背景。理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。

理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。知道指数函数y=ax 与对数函数y=loga x互为反函数(a > 0, a≠1)。通过实例,了解幂函数的概念;结合函数y=x, y=x2, y=x3, y=1/x, y=x1/2 的图象,了解它们的变化情况。

3. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用。

4. 利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

5以长方体为载体,使学生在直观感知的基础上,认识空间中点、直线、平面之间的位置关系。通过对大量图形的观察、实验、操作和说理,使学生进一步了解平行、垂直判定方法以及基本性质。学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.

6. 在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。能根据斜率判定两条直线平行或垂直。

根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。能用解方程组的方法求两直线的交点坐标。探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

四.教学措施和活动

1. 加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。

2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念。

3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。

4、与学生多沟通、多交流,真正成为学生的良师益友。

5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

高一数学教学计划优秀 篇13

教材分析:

解不等式是不等式学习的主要内容,是中学数学的一项重要技能。主要类型有:一元一次不等式或不等式组的解法,一元二次不等式或不等式组的解法。其中,一次不等式的解法是基础,初中已经学习,二次不等式是重点,也是学习的难点。作为数学重要的工具及方法,经常运用于其它数学知识之中。一元二次不等式的解法主要有二种,课本上介绍的是“数形结合”方法,这种方法将二次函数,二次方程结合为一体,并且借助“图形”直观地得出答案,充分展现了数学知识之间的内在联系,另外也展现了“数形结合”思想方法的巨大魅力。然而,个人认为,还有一种更加自然的方法,将二次不等式转化为一次不等式组的方法,这种方法思路自然,同时也体现了“转化”思想,难度也不大,应该更加符合学生的实际思维及思路。

学情分析:

初中已经学习了一元一次不等式(或组)的解法,积累了一定的解题经验。同时,对于二次方程,二次函数等相关知识学生均较为熟悉。然而,根据自己的调查,一少部分学生对于一元一次不等式及不等式组的解法都表现出一定程度的陌生。进而,可以先从复习简单的一次不等式及不等式组入手加以展开教学。

学生心理方面,学习积极性较高,对数学的学习兴趣、信心也比较理想,有较强的学习动机——考上大学,尽管是外在的诱因。

教学目标:

①知识与技能

熟练掌握一元一次不等式及不等式组的解法,初步学会两种方法求出一元二次不等式的解集

②过程与方法

经历不等式求解的探索及发现过程,体验“数形结合及转化”思想的魅力,掌握方法,学会学习

③情感、态度及价值观

在上述过程中,体验成功,激发了对数学学习的兴趣及信心,发展了对数学学习的积极情感,增强了学习的内在动机

教学重点:

一元二次不等式的解法

教学难点:

解法的探索及发现,关键在于“识图能力”

反思:

今天的课堂,这个难点突破欠缺力量,主要缘于自己备课时对难点考虑不到位,进而缺乏必要的设计。在课堂上,就难点特别与个别差生进行了交流,并且给予了帮助及指导。在指导过程中,我找出了他们困难的二个环节:

首先,对平面曲线上点的横坐标与纵座标之间的对应关系表现陌生,进而对它们的取值变化情况感到费解。

其次,是差生的思维能力尚处于“经验思维”,辩证思维能力薄弱,进而对运动中的点的坐标取值范围只能是“一筹莫展”。

在了解情况后,遵循“最近发展区”原理,以问题串的形式给差生提供必要的帮助后,差生也顺利度过了难关。由此足以说明,从知识的角度而言,“没有教不好的学生,只有不会教的教师:这句话还是相当有道理的。当然,这一切的前提就是对学生“学情”的掌握。美国著名心理学家、结构主义学派的代表人布鲁纳也有类似观点:给我一打健康的儿童,我可以教会他任何任何学科任何年龄段的任何知识。

教学程序:

一、复习一元一次不等式及不等式组的解法

以题组形式设计习题

①2x+3>7

②不等式组

③ax>b

二、创设二次不等式的生活背景实例,引入课题

采用课本上的实例,有关网络收费问题

三、一元二次不等式的解法探索

(1)

在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。

由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。

(2)

采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的解题步骤。今天的课堂上,这些解题步骤全部由学生的语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。

之后,从特殊到一般,研究一般的二元一次不等式的解法。由于经历了前面的解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。

反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。

四、练习环节

可以说,即使到了高三,仍然有不少同学对于一元二次不等式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。

课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。

五、课堂小结

知识,思想、方法及感悟等

六、课后作业

①作业设计:分成A、B两层,难度不一,让学生自主选择,均来源于课本上的A组或B组

②课外思考题:

1比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同

2已知不等式mx^2-(m-2)x+m>0的解集为R,求m的取值范围

变式一:戓将R改为空集,此时结论如何

变式二:仿上,自己改编条件,并解之。

反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。

高一数学教学计划优秀 篇14

一、教学资料:

本学期的数学教学资料是高一数学下册,包括第四章《三角函数》和第五章《平面向量》。按照数学教学大纲的要求,第四章教学需要36个课时(不包含考试与测验的时间);第五章的教学需要22个课时,共计需要58个课时。本学期有两次月考和五一长假,实际授课时间为18周,按每周6课时计算,数学课时到达110课时左右,时间相当充足。这为我们数学组全面贯彻“低切入、慢节奏”的教学方针供给了保障,也是我们提高学生数学水平的又一次极好的机会。

二、教学计划:

本学期的期中考试(预计在4月14号至4月17号进行)涵盖的资料为第四章的前9节,由于课时量充足,第10节“正切函数的图像和性质”以及第11节“已知三角函数值求角”将在上半学期讲授,这样下半个学期的教学任务为30个课时。

我们备课组经过认真的思索、充分的讨论,将期中考试前的教学进度安排如下:

(一单元)任意角的三角函数

§4、1角的概念的推广3课时

§4、2弧度制3课时

§4、3任意角的三角函数3~4课时

§4、4同角三角函数的基本关系4课时

§4、5正弦、余弦的诱导公式4课时

复习课(习题课)4课时

单元测试及讲评2课时

(二单元)两角和与差的三角函数

§4、6两角和与差的正弦、余弦、正切7课时

习题课3课时

§4、7两倍角的正弦、余弦、正切4课时

习题课2课时

单元测试及讲评2课时

(三单元)三角函数的图象及性质

§4、8正弦、余弦函数的图象和性质5课时

习题课2课时

§4、9函数的图象4课时总计授课53课时,余下课时可安排期中复习。

期中考试后的授课计划:

§4、10正切函数的图象和性质3课时

§4、11已知三角函数值求角4课时

习题课2课时

第四章复习4课时

第五章

(一单元)向量及其运算

§5、1向量1课时

§5、2向量的加减法2课时

§5、3实数与向量的积3课时

§5、4平面向量的坐标计算3课时

§5、5线段的定比分点2课时

§5、6平面向量的数量积及运算律3课时

§5、7平面向量数量积的坐标表示2课时

§5、8平移2课时

习题课3课时

单元测试与讲评(随堂)2课时

§5、9正弦、余弦定理5课时

§5、10解斜三角形应用举例2课时

实习与研究性课题4课时

习题课3课时

单元测试与讲评2课时

高一数学教学计划优秀 篇15

金色九月,又是一年开学季,本人这学期担任两个直升班高一(9)高一(11)班的教学工作,现将这学期的教学工作计划,包括对教学思想、教材、教法和学情的分析等等作如下安排。

一、教学思想

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是北师大版,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可理解性等到,具有如下特点:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。

2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。

4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1、选取与资料密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的目的。

2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

高一(9)、高一(11)两个直升班,学习情景良好,学生学习进取性很高,但自我控制本事不强,个别同学基础薄弱,所以在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算本事太差,学生不喜欢去算题,嫌麻烦,只注重思路,所以在以后的教学中,重点在于培养学生的计算本事,同时要进一步提高其思维本事。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些资料。所以时间上可能仍然吃紧。同时,其底子薄弱,所以在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。

2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。

6、重视数学应用意识及应用本事的培养。

俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好必须的教学计划很有必要。

我相信经过我们大家共同努力,师生其心,高一(9)、高一(11)两班必须会取得梦想的成绩!

高一数学教学计划优秀 篇16

一、指导思想

本学期高一备课组以学校工作计划为指导,以提高教学质量为目标,以优化课堂教学为中心,团结合作,努力提高思想素质和业务素质,团结合作,互相学习,认真备好课,上好每一节课,并结合新教材的特点,开展研究性学习的活动,在教学中,抓好基础知识教学,着重学生能力的培养,打好基础,全面提高,为来年高考作好充分的准备,争取优异的`成绩。

二、教学目标、

(一)情意目标

(1)通过分析问题的方法的教学,培养学生的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究三角函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程法。

(二)能力要求

1、培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示三角函数有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过算法初步,算法步骤;程序框图(起始框,判断框,附值框);语言(顺序,条件语句,循环语句)。第二部分,统计,第三步分,概率,古典概型,几何概型。的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

三、具体措施

1、期中考前上好第一册(必修3),期中考后完成好必修4。

2、抓好数学补差,培优活动各班在星期1或星期4的下午。

3、立足于教材。

4、要求学生完成课后练习及每一章课后习题。

5、我们组还继续学习了《课堂教学论》,《现代教育技术》,努力学习多媒体课件的制作。

6、继续认真开展师徒结对活动,以老带新。师徒间经常听课交流,认真评课。集中备课,共同商讨教材等。

7、抓好竞赛辅导,时间定于周三、周四的提前时间,周六的下午1点到3点。

8、段统一考试在周日或者周三的晚自修时间,每隔2周考一次。

9、上学期必修4的学分认定考试补考及落实工作。

10、响应学校教务处的备课计划安排,督促组员落实工作。

11、抓好集体备课。

高一数学教学计划优秀 篇17

一、指导思想:

在学校教学工作意见指导下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。

二、教材简析:

本学期仍然使用人教版《普通高中课程标准实验教科书·数学(A版)》教材,在坚持我校数学教育优良传统的前提下,在学生九年义务教育数学课程的基础上,进一步提高学生所必要的数学素养,以满足学生的发展与社会进步的需要,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。

三、教学任务:

本学期授课内容:必修一、必修二。

四、学生基本情况及教学目标:

学生基本情况:本届学生普遍基础较差,学习自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。其次,学生的计算能力太差,学生不喜欢去算题,嫌麻烦,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,因为学生底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

教学目标:认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。高一学生共有20个班,分两个教学层次,每层个10个班。实验班的学生可根据实际情况提高教学目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。

五、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的课堂素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3、在教学中引导学生通过类比,推广,特殊化,化归等方法,尽可能培养学生逻辑思维的习惯。

六、教学措施:

1、认真落实,搞好集体备课。每周进行一次集体备课。各位老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的练习活页。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。

3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。

4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

高一数学教学计划优秀 篇18

一、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

二、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

三、教学内容

第一章集合与函数概念

1.通过实例,了解集合的含义,体会元素与集合的属于关系。

2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

3.理解集合之间包含与相等的含义,能识别给定集合的子集。

4.在具体情境中,了解全集与空集的含义。

5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

10.通过具体实例,了解简单的分段函数,并能简单应用。

11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

12.学会运用函数图象理解和研究函数的性质。

课时分配(14课时)

第二章基本初等函数(I)

1.通过具体实例,了解指数函数模型的实际背景。

2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

3.理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

5.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

6.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

课时分配(15课时)

第三章函数的应用

1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

2.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

3.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

4.根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

课时分配(8课时)

考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。

高一数学教学计划优秀 篇19

一.学情分析

20xx年秋季起,x省高中新课程实验工作已经实行5个年头,我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。我校虽是一所省级重点中学,但学生基础较差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。

二:能力要求

1、培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生的运算能力。

(1)通过概率的训练,培养学生的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

三:教学任务与目的

本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

1.加强集体备课与个人学习,个人要加强自我学习和养成解数学题的习惯,提高个人专业素养和教学基本功。

2、注重培养学生自主学习的能力,转变学生学习数学的方式。学生是学习和发展的主人,教学中要体现学生的主体地位,增强学生的自我学习,自我教育与发展的意识和能力。改善学生的学习方式是高中数学新课程追求的基本理念。

3、了解新课程教学基本程序,掌握新课程教学常规策略,立足于提高课堂教学效率。

4、与学生多沟通、多交流,真正成为学生的良师益友。

5、要深刻理解领悟新教材的立意进行教学,而不要盲目地加深难度。

通过了解数学知识在生活和科技发展中所起到的促进作用,激发学习数学的兴趣。通过阅读和举例领略数学与身边事物的密切联系,感悟数学在生活中的应用。

高一数学教学计划优秀 篇20

教学目标

1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

教学重点、难点

重点:幂函数的性质及运用

难点:幂函数图象和性质的发现过程

教学方法:问题探究法 教具:多媒体

教学过程

一、创设情景,引入新课

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长 ,这里a是S的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

二、新课讲解

由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。

教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数?

① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)

2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

(学生讨论,教师引导。学生回答。)

3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

(学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

(学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)

4上述函数①y=x ②y= ③y=x ④y=x 的单调性如何?如何判断?

(学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

教师总评:幂函数的性质

(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),

(2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,

(3)如果a7

②不等式组

③ax>b

二、创设二次不等式的生活背景实例,引入课题

采用课本上的实例,有关网络收费问题

三、一元二次不等式的解法探索

(1)

在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。

由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。

(2)

采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的解题步骤。今天的课堂上,这些解题步骤全部由学生的`语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。

之后,从特殊到一般,研究一般的二元一次不等式的解法。由于经历了前面的解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。

反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。

四、练习环节

可以说,即使到了高三,仍然有不少同学对于一元二次不等式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。

课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。

五、课堂小结

知识,思想、方法及感悟等

六、课后作业

①作业设计:分成A、B两层,难度不一,让学生自主选择,均来源于课本上的A组或B组

②课外思考题:

1比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同

2已知不等式mx^2-(m-2)x+m>0的解集为R,求m的取值范围

变式一:戓将R改为空集,此时结论如何

变式二:仿上,自己改编条件,并解之。

反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。

高一数学教学计划优秀 篇21

本学期担任高一5、6两班的数学教学工作,两班学生共有110人,初中的基础参差不齐,但两个班的学生整体水平还可以;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

一、教学目标.

(一)情意目标

(1)通过分析问题的方法的教学,培养学生 的学习的兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

(二)能力要求

1、培养学生记忆能力。

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(3)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。

2、培养学生 的运算能力。

(1)通过概率的训练,培养学生 的运算能力。

(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生 的运算能力。

(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

3、培养学生 的思维能力。

(1)通过对简易逻辑的教学,培养学生 思维的周密性及思维的逻辑性。

(2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

(3)通过不等式、函数的引伸、推广,培养学生 的创造性思维。

(4)加强知识的横向联系,培养学生 的数形结合的能力。

(5)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

(三)知识目标

1.集合、简易逻辑

(1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

(2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.

(3)掌握一元二次不等式、绝对值不等式的解法。

2.函数

(1)了解映射的概念,理解函数的概念.

(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

(4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.

(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.

(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

3.数列

(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.

二、教学重点

1、集合、子集、补集、交集、并集.一元二次不等式的解法

四种命题.充分条件和必要条件.

2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用.

3.等差数列及其通项公式.等差数列前n项和公式.

等比数列及其通项公式.等比数列前n项和公式.

三、教学难点

1. 四种命题.充分条件和必要条件

2. 反函数、指数函数、对数函数

3. 等差、等比数列的性质

四、工作措施.

1、抓好课堂教学,提高教学效益。

课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

(1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

(2)、加大课堂教改力度,培养学生 的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

高一数学教学计划优秀 篇22

本学期的数学教学内容是高一数学下册,包括第四章《三角函数》和第五章《平面向量》。按照数学教学大纲的要求,第四章教学需要36个课时(不包含考试与测验的时间);第五章的教学需要22个课时,共计需要58个课时。本学期有两次月考和五一长假,实际授课时间为18周,按每周6课时计算,数学课时达到110课时左右,时间相当充足。这为我们数学组全面贯彻“低切入、慢节奏”的教学方针提供了保障,也是我们提高学生数学水平的又一次极好的机会。

教学计划:

依据南昌市的高一数学教学进度安排,本学期的期中考试(预计在4月14号至4月17号进行)涵盖的内容为第四章的前9节,由于课时量充足,第10节“正切函数的图像和性质”以及第11节“已知三角函数值求角”将在上半学期讲授,这样下半个学期的教学任务为30个课时。

我们备课组经过认真的思索、充分的讨论,将期中考试前的教学进度安排如下:

(一单元)任意角的三角函数

§4.1角的概念的推广 3课时

§4.2弧度制 3课时

§4.3任意角的三角函数 3~4课时

§4.4同角三角函数的基本关系 4课时

§4.5正弦、余弦的诱导公式 4课时

复习课(习题课) 4课时

单元测试及讲评(随堂) 2课时

(二单元)两角和与差的三角函数

§4.6两角和与差的正弦、余弦、正切 7课时

习题课 3课时

§4.7两倍角的正弦、余弦、正切 4课时

习题课 2课时

单元测试及讲评(随堂) 2课时

(三单元)三角函数的图象及性质

§4.8正弦、余弦函数的图象和性质 5课时

习题课 2课时

§4.9函数 的图象 4课时

总计授课53课时,余下课时可安排期中复习。

期中考试后的授课计划:

§4.10正切函数的图象和性质 3课时

§4.11已知三角函数值求角 4课时

习题课 2课时

第四章复习 4课时

第五章

(一单元)向量及其运算

§5.1向量 1课时

§5.2向量的加减法 2课时

§5.3实数与向量的积 3课时

§5.4平面向量的坐标计算 3课时

§5.5线段的定比分点 2课时

§5.6平面向量的数量积及运算律 3课时

§5.7平面向量数量积的坐标表示 2课时

§5.8平移 2课时

习题课 3课时

单元测试与讲评(随堂) 2课时

§5.9正弦、余弦定理 5课时

§5.10解斜三角形应用举例 2课时

实习与研究性课题 4课时

习题课 3课时

单元测试与讲评(随堂) 2课时

竞赛辅导:

为发展我校的素质教育,贯彻个性化发展的原则,数学组拟对在校生中有数学思维特长的学生进行竞赛类的辅导。由6个班的学生共同组建一个30人左右的数学小组,每周由数学组的成员进行具有针对性的竞赛辅导,目标是今年4月举行的全国数学竞赛。大体的时间安排如下:每周举行1到2次,时间为第8节课。

教学课题:案头工作的尝试

案头工作不仅仅是一个总结的过程,他同时也是创造性思维的一个反映,对于各门学科,特别是数理化三门理科具有特殊的意义。数学组经过研究,决定在这方面作出尝试,拟从班上选出个别学生,对其进行案头工作的指导,要求有专门的案头本,每次对作业的错误进行总结,观察这部分学生的学习状况,并对其学习上的表现作出记录。以便今后与其他学生作比较。

高一数学教学计划优秀 篇23

一、学生状况分析

学生整体水平一般,成绩以中等为主,中上不多,后进生也有一些。几个班中,从上课一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

二、教材简析

使用人教版《普通高中课程标准实验教科书?数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修2有四章(空间几何体;点线平面间的位置关系;直线与方程;圆与方程)。

三、教学任务

本期授课内容为必修1和必修2,必修1在期中考试前完成(约在11月5日前完成);必修2在期末考试前完成(约在12月31日前完成)。

四、教学质量目标

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

五、促进目标达成的重点工作及措施

(一)重点工作:

认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。

(二)分层推进措施

1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。

6、重视数学应用意识及应用能力的培养。

高一数学教学计划优秀 篇24

Ⅰ.教学内容解析

本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.

这是指数函数在本章的位置.

指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.

指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.

Ⅱ.教学目标设置

1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.

2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.

3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.

4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.

Ⅲ.学生学情分析

授课班级学生为南京师大附中实验班学生.

1.学生已有认知基础

学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.

2.达成目标所需要的认知基础

学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.

3.难点及突破策略

难点:1. 对研究函数的一般方法的认识.

2. 自主选择底数不当导致归纳所得结论片面.

突破策略:

1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.

2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.

3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.

Ⅳ.教学策略设计

根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.

学生的自主学习,具体落实在三个环节:

(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.

(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.

(3)性质应用阶段,学生自主举例说明指数函数性质的应用.

研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.

Ⅴ.教学过程设计

1.创设情境建构概念

师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?

师:大家知道细胞分裂的规律吗?(出示情境问题)

[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.

师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.

[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.

[教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.

方案1:

生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

生:函数y=0.5x,y= x,y=(-2)x,y=1x…

师:板书学生举例(停顿),好像有不同意见.

生:底数不能取负数.

师:为什么?

生:如果底数取负数或0,x就不能取任意实数了.

师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.

(若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)

师:这些函数有什么共同特点?

生:都有指数运算.底数是常数,自变量在指数位置.

(若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)

师:具备上述特征的函数能否写成一般形式?

生:可以写成y=ax(a>0).

师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

方案2:

生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

生:函数y=0.5x,y= x,…

师:这些函数的自变量是什么?它们有什么共同特点?

生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.

师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?

生:底数不能取负数.

师:为什么?

生:如果底数取负数或0,x就不能取任意实数了.

师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

[阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.

[意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.

2.实验探索汇报交流

(1)构建研究方法

师:我们定义了一个新的函数,接下来,我们研究什么呢?

生:研究函数的性质.

〖问题2你打算如何研究指数函数的性质?

[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.

[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.

[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.

师:(稍等片刻)我们一般要研究哪些性质呢?

生:变量取值范围(定义域、值域)、单调性、奇偶性.

师:(板书学生回答)怎样研究这些性质呢?

生:先画出函数图象,观察图象,分析函数性质.

生:先研究几个具体的指数函数,再研究一般情况.

师:板书“画图观察”,“取特殊值”

(若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)

(若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))

[意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.

(2)自主探究汇报交流

师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.

〖问题3选取数据,画出图象,观察特点,归纳性质.

[设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.

由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.

数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.

[师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.

[教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.

生:自主选择数据,在坐标纸上列表作图,列出函数性质.

师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)

生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.

师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?

师:(用彩笔描粗图象,故意出错)错在哪里?为什么?

生:指数函数是单调递增的,过定点(0, 1).

师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).

师:指数函数还有其它性质吗?

师:也就是说值域为(0, +∞).

生:指数函数是非奇非偶函数.

师:有不同意见吗?

生:当0

(其它预设:

(1)当a>1时,若x>0,则y>1;若x1.

(2)学生画出y=2x和y=3x图象,得出函数递增速度的差异.

(3)画出y=2x和y=0.5x图象,得到底数互为倒数的指数函数图象关于y轴对称.)

师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0

[阶段小结] 指数函数y=ax(a>0且a≠1)具有以下性质:

①定义域为R.

②值域为(0, +∞).

③图象过定点(0, 1).

④非奇非偶函数.

⑤当a>1时,函数y=ax在(-∞, +∞)上单调递增;

当0

⑥函数y=ax与y=x (a>0且a≠1)图象关于y轴对称.

⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:

x∈(-∞, 0)时,y=ax图象在y=bx图象下方;

x=0时,两图象相交;

x∈(0,+∞)时,y=ax图象在y=bx图象上方.

[意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.

3.新知运用巩固深化

(方案一)(分析函数性质的用途)

师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?

生:可以求最值,可以比较两个函数值的大小.

师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)

生:(举例并判断大小.)

师:你考察了哪个指数函数?怎么想到的?(规范表述)

师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)

(方案二)

师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

师:(口述并板书)你能比较32与33的大小吗?

生:直接计算比较.

师:那比较30.2与30.3的大小呢?能不能不计算呢?

生:利用函数y=3x的单调性.

师:能具体说明吗?(引导学生规范表达)我们再试一试.

(出示例1)

【例1】比较下列各组数中两个值的大小:

①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

[设计意图] 引导学生运用指数函数性质.对于 32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.

[师生活动]学生板演,教师组织学生点评.

[教学预设] ①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.

师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?

师:(对③的引导)你考虑利用哪个函数?是y=1.5x还是y=0.8x?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)

生:它们都过点(0, 1).

师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?

生:比较1.50.3,0.81.2和1的大小.

师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.

【例2】

①已知3x≥30.5,求实数x的取值范围;

②已知0.2x高中数学教学计划10

本学期我担任高一(5)、(16)班的数学教学工作,本学期的教学工作计划如下。

一、指导思想:

(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、学情分析及相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点。所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。。

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

高一数学教学计划优秀 篇25

本学期,我负责高一三、四班的数学教学。这两个班有138名学生。初中生基础薄弱,整体水平不高。从两周的课堂来看,学生的学习积极性仍然很高,有很多学生喜欢提问。但由于基础知识薄弱,学习习惯差,自我控制能力差,无法正确定位自己,课堂效率普遍,教学工作存在必要的难度。为了做好本学期的教学工作,特制定以下教学工作计划。

一、教学质量目标

(1)掌握必要的数学基础知识和技能,理解基本数学概念和数学结论的实质,体验数学思想和方法。

(2)培养学生的逻辑思维能力、计算能力、空间想象能力,以及综合运用相关数学知识分析和解决问题的能力。使学生逐步学会观察、分析、综合、比较、抽象、概括、探索和创新的技能,运用归纳、演绎、类比的方法进行推理,正确、系统地表达推理过程的技能。

(3)根据数学学科特点,加强学习目的教育,提高学生学习数学的意识和兴趣,培养学生良好的学习习惯、求实的科学态度、顽强的学习毅力和独立思考的精神,探索创新。

(4)使学生具有必要的数学视野,逐步理解数学的科学价值、应用价值和文化价值,形成批判性思维习惯,倡导数学的理性精神,体验数学的审美意义,理解普遍运动、变化、创新、创新,数学相互联系、相互转化,进一步树立辩证唯物主义和历史唯物主义的世界观。

(5)通过收集信息、处理数据、制作图像、分析原因、得出结论,学习解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期。教师负有双重责任。他们不仅要不断夯实基础,加强综合技能的培养,还要渗透高考思想方法,准备三年的学习。

二、教学目标

(I)情感目标

(1)通过问题分析的教学方法,培养学生的学习兴趣。

(2)提供生活背景。通过数学建模,让学生认识到数学是存在的,培养学习数学和运用数学的意识

高一数学教学计划优秀 篇26

一.指导思想:

以发展教育的理念为指引,以学校教务处、教研组、年级组工作计划为指南,加强备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才。

二.工作目标

1、全组成员精诚团结,互相学习,取长补短,力争使我们高一数学备课组组成为一个优秀集体。

2、规定集体备课的时间(单周二上午第三节),分工协作,加强研讨,统一助学案,统一教学进度,每周一练,又要根据本班的学情进行复备。

3、积极参与备课组的教学资源的建设,丰富博客内容,鼓励每位教师就自己在教学中的经验、体会或教训,及时总结。

三.学情分析:

1-2班属普高班,3-8班属综合重点班,学习情况在整个年段较好,大部分学生基础相比较较扎实,上个学期,学生自觉性较好,自我控制力强,但部分学生上进心仍然不太强,缺少紧迫感,自我约束和自我提高能力有待加强,并且课堂内容除了基础,也要注重能力培养,适当增加难度,向高考看齐。11-17班属综合普通班,学习情况一般,课堂主体性差,自我控制能力较弱,因此在教学中需时时提醒学生,培养其自觉性,9班园艺班,10班计算机班,学习情况一般,学生学习自觉性差,会出现各种各样的违纪行为。经过一个学期的锻炼,各班数学计算能力有一定的提高,基本能脱离计算器,但很多学生偏科严重,上课走神,说话,睡觉,作业不按时按质完成,学习数学的积极性,主动性较差。所以在以后的教学中,重点在于培养学生学习数学的兴趣,增强课堂的趣味性,教师上课照顾到全部学生。同时普通班和3+2班,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

四.具体工作和措施:

1.认真学习教学大纲和钻研教材教法,把握好教材的广度、深度和难度。

2.积极进行集体备课,为了能够将集体备课落实到实处,集体备课做到统一时间,统一地点。

3..抓好每次备课组活动。遵守会议制度,活动目标明确,重点突出,形式多样,确定专题发言人,能提前准备好教案,活动能充分讨论,取长补短,做好记录。

4.本组教师年轻化程度高,因此要加大新课标的学习力度,通过备课组学习,集体讨论,个人学习为主,要求每人在学期末能撰写一篇论文或案例,使每位教师由教学型向研究型迈进。

5.落实新老教师的传、帮、带工作,师徒结对,促进全体教师共同成长。

6.抓好初中与高中数学基础知识、基本技能和基本数学方法的衔接教学,使知识系统化、网络化,牢固打好数学基础。

7.课堂教学要多些师生互动,活跃课堂气氛,教学中要注重渗透数学思想方法和数学双基的教学。

8.教学中要注重:

(1)强化思维过程,努力提高学生的理性思维能力;

(2)增强实践意识、重视探究和应用;

(3)倡导主动学习,营造自主探索和应用:教师要善于从教材实际和社会生活中提出问题,开设研究性课题,让学生自主学习讨论交流,在解决问题中激发兴趣、树立信心,培养钻研精神,提高数学表达能力和数学交流能力;

9.贯彻落实教学常规,作业全批全改,在作业上写好激励性的评语

10.精讲精练,落实单元过关测试,教师要全批全改,及时认真讲评。并做好试卷补偿练习,单元卷由备课组成员轮流负责,做到侧重知识点的覆盖,难度控制(不可太难);

11.加强尖子生的培养和后进生的转化工作。做好尖子生的培养工作及所有学生的学习情况跟踪工作,争取不让学生掉队,认真做好因材施教,积极探讨“分层教学”的教学方法;

12.指导学生尽快适应高、初中过渡阶段的学习,教学时应注意 高、初中知识的衔接,并对学生进行学法指导。

13.尽快了解学生的数学的基本情况,进一步培养好学生学习数学的兴趣。

14.做好教情学情的调查,及时调整教与学,制定好研究性课题,组织本备课组教师做好学生的指导工作。

高一数学教学计划优秀 篇27

教学目的:

(1)使学生初步理解集合的概念,知道常用数集的概念及记法

(2)使学生初步了解“属于”关系的意义

(3)使学生初步了解有限集、无限集、空集的意义

教学重点:集合的基本概念及表示方法

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

授课类型:新授课

课时安排:1课时

教 具:多媒体、实物投影仪

内容分析:

1.集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子

这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念

集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明

教学过程:

一、复习引入:

1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:

由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合 记作N,

(2)正整数集:非负整数集内排除0的集 记作N*或N+

(3)整数集:全体整数的集合 记作Z ,

(4)有理数集:全体有理数的集合 记作Q ,

(5)实数集:全体实数的集合 记作R

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它

数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写

三、练习题:

1、教材P5练习1、2

2、下列各组对象能确定一个集合吗?

(1)所有很大的实数 (不确定)

(2)好心的人 (不确定)

(3)1,2,2,3,4,5.(有重复)

3、设a,b是非零实数,那么 可能取的值组成集合的元素是_-2,0,2__

4、由实数x,-x,|x|, 所组成的集合,最多含( A )

(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

(1) 当x∈N时, x∈G;

(2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,

则x= x+0* = a+b ∈G,即x∈G

证明(2):∵x∈G,y∈G,

∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

∵a∈Z, b∈Z,c∈Z, d∈Z

∴(a+c) ∈Z, (b+d) ∈Z

∴x+y =(a+c)+(b+d) ∈G,

又∵ =

且 不一定都是整数,

∴ = 不一定属于集合G

四、小结:本节课学习了以下内容:

1.集合的有关概念:(集合、元素、属于、不属于)

2.集合元素的性质:确定性,互异性,无序性

3.常用数集的定义及记法

五、课后作业:

六、板书设计(略)

高一数学教学计划优秀 篇28

一、基本情况分析

任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。

二、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

三、教学建议

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。

发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。

6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

四、教研课题

高中数学新课程新教法

五、教学进度

第一周:集合

第二周:函数及其表示

第三周:函数的基本性质

第四周:指数函数

第五周:对数函数

第六周:幂函数

第七周:函数与方程

第八周:函数的应用

第九周:期中考试

第十、十一周:空间几何体

第十二周:点,直线,面之间的位置关系

第十三、十四周:直线与平面平行与垂直的判定与性质。

第十五、十六周:直线与方程

第十八、十九周:圆与方程

高一数学教学计划优秀 篇29

指导思想:

(1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

学情分析及相关措施:

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

(1)注意研究学生,做好初、高中学习方法的衔接工作。

(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.

(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

教学进度安排:

周 次 时 内 容 重 点、难 点

第1周

9.2~9.6 5 集合的含义与表示、

集合间的基本关系、

会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念

第2周

9.7~9.13 5 集合的基本运算

函数的概念、

函数的表示法 能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用

第3周

9.14~9.20 5 单调性与最值、

奇偶性、实习、小结 学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义

第4周

9.21~9.27 5 指数与指数幂的运算、

指数函数及其性质 掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念

第5周

9.28~10.4 5 (9月月考?、国庆放假)

第6周

10.5~10.11 5 对数与对数运算、

对数函数及其性质 理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数

第7周

10.12~10.18 5 幂函数 从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质

第8周

10.19~10.25 5 方程的根与函数零点,

二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解;

第9周

10.26~11.1 5 几类不同增长的模型、函数模型应用举例 对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义

第10周

11.2~11.8 期中复习及考试 分章归纳复习+1套模拟测试

第11周

11.9~11.15 5 任意角和弧度制

任意角的三角函数 了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义

第12周

11.16~11.22 5 三角函数的诱导公式

三角函数的图像和性质 借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性

第13周

11.23~11.29 5 函数y=Asin(wx+q)的图像 借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响

第14周

11.30~12.6 5 三角函数模型的简单应用 单元考试 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型

第15周

12.7~12.13 5 平面向量的实际背景及基本概念,平面向量的线性运算 掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算

第16周

12.14~12.20 5 平面向量的基本定理及坐标表示,平面向量的数量积, 理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系

第17周

12.21~12.27 5 平面向量应用举例,

小结 用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力

第18周

12.28~1.3 5 两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系

第19周

1.4~1.10 5 简单的三角恒等变换

期末复习

高一数学教学计划优秀 篇30

一、指导思想:

(1)随着素质教育的深入展开,《课程方案》提出了“教育要面向世界,面向未来,面向现代化”和“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人”的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。

(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

(3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

(4)使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

二、学生状况分析

本学期担任高一(1)班和(5)班的数学教学工作,学生共有111人,其中(1)班学生是名校直通班,学生思维活跃,(5)班是火箭班,学生基本素质不错,一些基本知识掌握不是很好,学习积极性需要教师提高,成绩以中等为主,中上不多。两个班中,从军训一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。

三、教材简析

使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修4有三章(三角函数;平面向量;三角恒等变换)。

必修1,主要涉及两章内容:

第一章集合

通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

1、了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

2、理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

3、理解补集的含义,会求在给定集合中某个集合的补集;

4、理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

5、渗透数形结合、分类讨论等数学思想方法;

6、在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

第二章函数的概念与基本初等函数Ⅰ

教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。

1、了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

2、理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

3、了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

4、培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

必修4,主要涉及三章内容:

第一章三角函数

通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

1、了解任意角的概念和弧度制;

2、掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

3、了解三角函数的。周期性;

4、掌握三角函数的图像与性质。

第二章平面向量

在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

1、理解平面向量的概念及其表示;

2、掌握平面向量的加法、减法和向量数乘的运算;

3、理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

4、理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

第三章三角恒等变换

通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

1、掌握两角和与差的余弦、正弦、正切公式;

2、掌握二倍角的正弦、余弦、正切公式;

3、能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

四、教学任务

本期授课内容为必修1和必修4,必修1在期中考试前完成(约在11月5日前完成);必修4在期末考试前完成(约在12月31日前完成)。

五、教学质量目标

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

2、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

六、促进目标达成的重点工作及措施

重点工作:

认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。

分层推进措施

1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、培养能力是数学教学的落脚点。能力是在获得和运用知识的过程中逐步培养起来的。

在衔接教学中,首先要加强基本概念和基本规律的教学。加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、讲清讲透数学概念和规律,使学生掌握完整的基础知识,培养学生数学思维能力,抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。

6、重视数学应用意识及应用能力的培养。

7、加强学生良好学习习惯的培养。

高一数学教学计划优秀 篇31

教学目标

1、通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

2、使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

3、培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

教学重点、难点

重点:幂函数的性质及运用

难点:幂函数图象和性质的发现过程

教学方法:

问题探究法

教具:多媒体

教学过程

一、创设情景,引入新课

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

二、新课讲解

由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s,v=t-1都是自变量的若干次幂的形式。

教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

幂函数的定义:一般地,我们把形如的函数称为幂函数(power function),其中是自变量,是常数。

1、幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数例1判别下列函数中有几个幂函数?

① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨(由学生独立思考、回答)

2、幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

(学生讨论,教师引导。学生回答。)

3、幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

(学生小组讨论,得到结论。引导学生举例研究。结论:幂指数不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

(学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)

4、上述函数①y=x ②y= ③y=x ④y=x的单调性如何?如何判断?

(学生思考,引导作图可得。并加上y=x和y=x-1图象)接下来,在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

教师总评:幂函数的性质

(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),

(2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,

(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。

5、通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?

学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。

例3巩固练习写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

例4简单应用1:比较下列各组中两个值的大小,并说明理由:

①0、75,0、76;

②(-0、95),(-0、96);

③0、23,0、24;

④0、31,0、31

例5简单应用2:幂函数y=(m -3m-3)x在区间上是减函数,求m的值。

例6简单应用2:

已知(a+1)<(3-2a),试求a的取值范围。

课堂小结

今天的学习内容和方法有哪些?你有哪些收获和经验?

1、幂函数的概念及其指数函数表达式的区别

2、常见幂函数的图象和幂函数的性质。

布置作业:

课本p、73 2、3、4、思考5

相关范文

一键复制全文保存为WORD