《三角形内角和》教学设计优秀7篇

作为一名辛苦耕耘的教育工作者,编写教学设计是必不可少的,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。优秀的教学设计都具备一些什么特点呢?读书破万卷,下笔如有神,本文是细致的小编小鱼儿帮大伙儿收集整理的7篇三角形内角和教学设计的相关文章,仅供参考。

角形内角和教学设计 篇1

教学内容:人教版小学数学第八册第85页例5及”做一做”

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想

3、在探索中体验发现的乐趣,增强学好数学的信心、

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:

验证所有三角形的内角之和都是180°

教具准备:多媒体课件。

学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、设疑引思

1、分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数、

2、每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、

3、设问:老师为什么能很快”猜”出第三个角的度数呢?

三角形还有许多奥妙,等待我们去探索、<导入新课,板书课题>

二、探索交流,获取新知

1、量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论、

2、折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度,初步验证”三角形的内角和是180°”的结论、

3、拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论、

4、师利用课件演示将一个三角形的三个角拼成一个平角的过程、

5、验证:FLASH演示三种三角形割补过程

发现1:通过把直角三角形割补后,内角∠2,∠3组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于()度。

发现2:通过把钝角、锐角三角形割补后,三角组成了一个()角,而()角等于()度。所以锐角三角形和钝角三角形的内角和都是180度。

6、小结:刚才能过量一量折一折拼一拼,你发现了什么?

生说,师板书:三角形的内角和———180°

三、应用练习,拓展提高

1、书例5后”做一做”

思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)

2、下面哪三个角会在同一个三角形中。

(1)30、60、45、90

(2)52、46、54、80

(3)61、38、44、98

3、走向生活:

(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?

(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)

四作业:作业本

五全课总结

总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?

板书设计:三角形的内角和

三角形的内角和———180°

角形内角和教学设计 篇2

【教学目标】

1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】

一、激趣引入。

1、猜谜语

师:同学们喜欢猜谜语吗?

生:喜欢。

师:那么,下面老师给大家出个谜语。请听谜面:

形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

生:三角形

2、介绍三角形按角的分类

师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

师分别出示卡片贴于黑板。

3、激发学生探知心里

师:大家会不会画三角形啊?

生:会

师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

生:试着画

师:画出来没有?

生:没有

师:画不出来了,是吗?

生:是

师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)

二、探究新知。

1、认识三角形的内角

看看这三个字,说说看,什么是三角形的内角?

生:就是三角形里面的角。

师:三角形有几个内角啊?

生:3个。

师:那

2、研究特殊三角形的内角和

师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?

生:算一算:90°+60°+30°=180°90°+45°+45°=180°

师:180°也是我们学习过的什么角?

生:平角

师:从刚才两个三角形的内角和的计算中,你发现了什么?

3、研究一般三角形的内角和

师:猜一猜,其它三角形的内角和是多少度呢?

生:

4、操作、验证

师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

要求:

(1)每4人为一个小组。

(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

(3)验证的方法不只一种,同学们要多动动脑子。

师:好,开始活动!

师:巡视指导

师:好!请一组汇报测量结果。

生:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

师:好!非常好!

师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

现在老师问同学们,三角形的内角和是多少?

生:180度。

师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

三、解决疑问

师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

生:没有

师:那你能用这节课的知识解释一下为什么画不出来吗?

生:两个直角是180度,没有第三个角了。

师:如果想画出有两个角是钝角的三角形你能画出来吗?

生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

师:学会了知识,我们就要懂得去运用。

四、巩固提高。

1、填空。

(1)三角形的内角和是()度。

(2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。

2、求下面各角的度数。

(1)∠1=27°∠2=53°∠3=()这是一个()三角形。

(2)∠1=70°∠2=50°∠3=()这是一个()三角形。

3、判断每组中的三个角是不是同一个三角形中的三个内角。

(1)80°95°5°()

(2)60°70°90°()

(3)30°40°50°()

4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)

对学生进行思品教育。

5、思考延伸。

根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?

6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

五、总结。

《三角形内角和》教学设计 篇3

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

重点难点:

掌握三角形的内角和是180°。

教学准备:

三角形卡片、量角器、直尺。

导学过程

一、复习

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)

二、新知

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)

1、读学卡的学习目标、任务目标,做到心里有数。

2、揭题:课件演示什么是三角形的内角和。

3、猜想:三角形的内角和是多少度。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)

(4)汇报结论(清楚明白的给小组加优秀10分)

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)

三、知识运用(课件出示练习题,生解答)

1、填空

(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( )。

(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。

(3)等边三角形的3个内角都是( )。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。

(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。

2、判断

(1)一个三角形中最多有两个直角。 ( )

(2)锐角三角形任意两个内角的和大于90。 ( )

(3)有一个角是60的等腰三角形不一定是等边三角形。 ( )

(4)三角形任意两个内角的和都大于第三个内角。 ( )

(5)直角三角形中的两个锐角的和等于90。 ( )

四、拓展探究

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

六、谈谈自己本节课的收获。

教学反思

今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想研究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

角形内角和教学教案设计 篇4

一、教学目标

1、知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。

2、能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。

3、情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。

二、教学过程

(一)创设情境,导入新课

1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?

(学生畅所欲言。)

2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,

3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)

(二)自主探究,发现规律

1、认识什么是三角形的内角和。

师:你知道什么是三角形的内角和吗?

通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

2、探究三角形内角和的特点。

①让学生想一想、说一说怎样才能知道三角形的内角和?

学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)

②小组合作。

通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

引导学生推测出三角形的内角和可能都是180°。

3、验证推测。

让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

(小组合作验证,教师参与其中。)

4、全班交流,共同发现规律。

当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。

学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

(三)巩固练习,拓展应用

根据发现的三角形的新知识来解决问题。

1、完成“试一试”

让学生独立完成后,集体交流。

2、游戏:选度数,组三角形。

请选出三个角的度数来组成一个三角形。

150°10°15°18°20°32°

35°50°52°54°56°58°

130°70°72°75°60°

学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。

3、“想想做做”第1题

生独立完成,集体订正,并说说解题方法。

4、“想想做做”第2题

提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

5、“想想做做”第3题

生动手折折看,填空。

提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

6、“想想做做”第5题

生独立完成,说说不同的解题方法。

7、“想想做做”第6题

学生说说自己的想法。

8、思考题

教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导

出四边形的内角和公式吗?

(四)课堂总结

本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。

三、教后反思:

“三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:

1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。

2、已知三角形两个角的度数,会求出第三个角的度数。

本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。

(一)创设情景,激发兴趣

俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。

(二)给学生空间,让他们自主探究

“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。

(三)以学定教,注重教学的有效性

新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。

角形内角和教学设计 篇5

【教材内容】

北京市义务教育课程改革实验教材(北京版)第九册数学

【教材分析】

《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于180°。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。

【学生分析】

在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

【教学目标】

1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。

2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。

3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。

【教学重点】

让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。

【教学难点】

能利用学到的知识进行合情的推理。

【教具学具准备】

课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸

【教学过程】

一、学具三角板,引入新课

1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)

2、顾名思义一个三角形都有几个角呀?(三个)

3、认识内角

(1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?

(2)这个三角形内有几个内角?(三个)这个呢?(三个)

(设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)

二、动手操作,探索新知

(一)直角三角形内角和

ⅰ、特殊直角三角形内角和

1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。

2、观察这两个三角形的度数,你有什么发现?

生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形)

生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?

(课件):(1)90°+60°+30°=180°)

那么另一个三角板的三个内角的总度数是多少?

(生回答,师课件:(2)90°+45°+45°=180)

3、你指的哪是180度?(生:这三个内角合起来是180度)

4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)

5、这个直角三角形的内角和是多少度?另一个呢?

6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。

(师出示一个平角)问:平角是什么样的?

7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。

ⅱ、一般直角三角形内角和

1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。

2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。

(1)小组活动(2)汇报

哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示)

三角形的种类

验证方法

验证结果

“量一量”的方法:

板书:有一点误差的度数

“剪一剪”的方法:

我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示)

现在我们也用这种方法试一试,看能不能拼成平角?(小组实验)

你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?

还有其他方法吗?

“折一折”的方法:

预设:①生:我是折的。师:怎样折的?你能给大家演示吗?

学生演示(课件:折的过程)

②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)

推理:

你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)

这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)

3、小结

(1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。

(2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形)

(设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。)

(二)、锐角三角形、钝角三角形的内角和

1、请你们任意画一个钝角三角形,一个锐角三角形

2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的?

3、学生模仿老师操作说理

4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。

师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是180°)。

(设计意图:引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。)

三、巩固新知,拓展应用

我们就用三角形的这一特性来解决一些问题

1、两个三角形拼成大三角形

(1)每个三角形的内角和都是少度?

(2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢

2、一个三角形去掉一部分

(1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?

再剪去一个三角形呢?(课件演示)

你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。

(2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形)

你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?

(3)如果五边形,你还能求出他的度数吗?

(设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。)

四、总结评价、延伸知识

通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?

师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。

(设计意图:帮助学生梳理本节课的知识脉络。)

《三角形内角和》教学设计 篇6

教学内容:

北师版小学数学四年级下册《探索与发现(一)—三角形内角和》

教材分析:

《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

学情分析:

本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。

教学目标:

1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。

2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

教学重点:

让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,,并能应用规律解决一些实际问题。

教学难点:

掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:

表格、课件。

学具准备:

各种三角形、剪刀、量角器。

一、创设情境 揭示课题。

1、复习

提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?

生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。

2、引入

三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。

播放课件,提问:它们在争论什么?

什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、�

(二)探索与发现

1、初步探索,提出猜想。

(1)量一量

①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②、小组合作。

③、汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在1800,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

2、动手操作,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)、小组合作,讨论验证方法。

(2)分组汇报,讨论质疑

学生可能会出现的方法:

A、撕拼的方法

把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是1800,。

讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

B、折一折的方法

把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

C提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)课件演示:两种方法的展示。

(2)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生一定会高兴地喊:“1800!

(3)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

(4)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800

(三)、回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800,。(齐读)

三、巩固深化,加深理解。

1、试一试:数学书28页第3题

∠A=180°— 90°—30°

2、练一练:数学书29页第一题(生独立解决)

∠A=180°— 75°— 28°

3、小法官:数学书29页第二题

4、拓展创新

A D G

B C E F H R

ABC的内角和是( )

DEF的内角和是( )

GHR的内角和呢?

小结:三角形的形状和大小虽然不同,但是三角形的内角和都是180度。

四、回顾课堂,渗透数学方法。

1、总结:猜想—验证—归纳—应用的数学方法。

2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

3、课堂延伸活动:探索——多边形内角和

板书设计:

探索与发现(一)

三角形内角和等于1800。

猜想 验证 得出结论 应用

角形内角和教学设计 篇7

教学内容:

人教版四年级下册第85面——87面。

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。

3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的发现过程。

教学准备:

教具:多媒体课件、三角板一个、两个完全一样的直角三角形。

学具:锐角三角形、直角三角形、钝角三角形各一个。

教学过程:

(一)创设情境,提出问题。

师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,

今天老师还给大家带来了一个老朋友,请看,是什么?

生:三角形!

师:前面我们已经认识了三角形,谁能给大家介绍一下?

学生讲学过的三角形知识。

(学生叙述到部分主要内容即可)

师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)

师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?

师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。

师:有谁知道这个三角形三个内角的度数?

(FLASH:生说完后师点击出第二个三角形,边说边点出度数)

[U1]试一试,看谁算得快。

师:谁来说说自己的计算过程?

[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是180度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生:……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

[U3]

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

(预设:如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师:那请你说一下你度量的结果好吗?

(生汇报度量结果)

师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?

生:180度。

师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

一键复制全文保存为WORD