五年级数学下册优秀教案7篇

学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。这里给大家分享一些关于五年级下册数学教案,方便大家学习。该页是美丽的编辑帮助大家收集整理的五年级数学下册优秀教案7篇,仅供借鉴。

五年级数学下册教案 篇1

【教学内容】

教材第20页内容。

【教学目标】

1.通过观察、操作,认识正方体的特征,形成正方体的概念。

2.通过观察、比较,明确长方体和正方体的相同点与不同点。

3.经历正方体的认识过程,初步学会用数学的眼光观察现实物体。

4.体验数学知识与实际生活的密切联系,培养学生的空间观念,渗透学习目的性的教育。

【教学重点】

掌握正方体的特征,理解长方体和正方体之间的关系。

【教学难点】

理解长方体和正方体之间的关系。

一、情境导入

1.回忆长方体的特征,请学生用语言进行描述。

2.操作:同桌交流,分别说出长方体的棱在哪儿?几条棱可以分别分成几组?相交于同一个顶点的三条棱叫做什么?

师:今天这节课,我们继续学习一种特殊的立体图形。(板书课题:正方体)

二、探究新知

1.观察正方体模型,组织学生展开交流,讨论。

师:正方体具有哪些特征呢?长方体和正方体有什么关系呢?

2.小组汇报学习结果。

组1:我们组发现正方体所有的面完全相同;长方体相对的面完全相同。而且正方体12条棱的长度都相等;长方体相对的4条棱的长度相等。

组2:我们组还要补充很重要的一点,正方体的长、宽、高都相等,长方体的长、宽、高不会出现都相等的情况。

师:长方体和正方体有什么关系呢?

组3:我们组发现正方体和长方体都有6个面、12条棱和8个顶点。

组4:我们组发现正方体相对的面也完全相同,正方体相对的4条棱长度也相等。因此,我们组认为:正方体也是长方体,只不过它是特殊的长方体。

3.小结。

(1)师:同学们的研讨交流非常好,的确像同学们所发现的,正方体完全符合长方体的特征,它是一种长宽、高都相等的特殊的长方体。谁能完整地概括一下正方体的特征呢?

生1:正方体有6个面、12条棱、8个顶点。

生2:正方体有6个面,每个面都是正方形且完全相同,有12条棱且长度都相等,有8个顶点。

(2)师:正如同学们所说,正方体是由6个完全相同的正方形围成的立体图形,它是一种长、宽、高都相等的长方体。那么正方体和长方体之间有哪些相同点和不同点呢?

生1:它们都有6个面、12条棱、8个顶点。

生2:正方体的棱长度都相等,长方体相对的棱长度相等。

三、巩固练习

1.教材第20页“做一做”。

2.教材第21~22页练习五第4、5、8、9题。

四、课堂小结

想一想,我们这节课都研究了什么?是用什么方法研究的?你学到了什么?

【板书设计】

正方体

6个面 12条棱 8个顶点

6个面都是正方形,6个面完全相同

12条棱长度相等

正方体是特殊的长方体。

【教后思考】

正方体特征的研究是以长方体特征的研究为基础的,在教学中把两者联系起来,通过长方体特征的研究方法的迁移,使学生自主进行正方体特征的研究,学生运用实物、抽象的几何图形,在小组合作学习中,通过动手操作、观察比较,认识了正方体的特征,并明确了长方体和正方体的关系,发展了空间观念,也使学生获得了探究知识成功的体验,增强了学习的信心,这是这节课做得较好的地方。

数学五年级下册教案 篇2

教学目标:

1、使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法会用正,负数记载相反量。知道0既不足正数,也不足负数,负数都小于0。

2、使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。

3、在联想、概括,推演中,体会数学的丰富、联系以及其生活中的应用价值,渗透进行对立统一、联系发展等最朴素的哲学思想教育。

教学重点:

理解负数的意义,初步建立负数的概念。

教学难点:

理解,正数、负数和0之间的关系。

教学过程:

一、从“生活事例”引入——了解负数的来源

1、同学们,不知不觉就到了金秋时节了(课件呈现美丽的秋景图片),大家觉得我们苏州这两天的天气怎么样?(学生回答后,课件呈现苏州天气预报、温度计图)这个温度计上显示的是昨天的最高气温,你能看出昨天的最高气温是多少吗?

(学生汇报过程小,引导学生了解温度计上一般有左右两行刻度以及左右两边刻度名称,左边代表摄氏度,通常用字母℃表示,一大格表示两度)

2、据科学研究,气温在18—24℃时,人体感觉最舒服。昨天达到28℃,我们就感觉热了。猜想:从现在往后,温度计上的红色酒精柱会怎样变化呢?

(设计意图:气温变化是学生生活中每天都会面对和感觉到的自然话题,将此作为课堂教学的开始,自然,贴切,能够吸引学生的广泛参与、考虑到学生对温度计的认识井不是非常熟悉,先单独安排一个看温度计的插曲,为后面新知教学做好了铺垫)

二、由“相反关系”展开——理解负数的意义

(一)教学例l,初步认识负数。

1、老师也是一个非常关注大气变化的人,几乎每天都要看中央电视台的天气预报。有一次我记录了三个城市的最低气温。第一个是东方大都市上海(出示温度计图),你能从温度计上面看出当天上海的最低气温吗?

2、第二个城市是(出示温度计图),你能从温度计上面看出南京的最低气温吗?这个温度比上海的气温怎样?

3、第三个城市是我们伟大祖国的首都北京。根据你的生活经验,北京的气温通常要比上海和南京怎样?学生提出猜想后,出示温度汁图,让学牛说出北京气温”零下4℃”。

4、刚才二个城市的最低气温中,非常巧,南京正好是0摄氏度。而上海超过了0摄氏度,是零上4摄氏度;北京却低于0摄氏度,是零下4摄氏度。这是一组相反的量。大家能想出巧妙的方法来记录这两个相反的气温吗?

5、学生讨论交流自己的设想,老师选择性板书:+4℃或4℃,—4℃等,并讲解负号,正号以及它们的读写。

6、巩固练习。

(1)选择合适的数表示各地的气温:

当天我还记下了几个城市和地区的最低气温,(分别出示西宁、哈尔滨、香港等城市温度计图)你能用这样的方法分别写出它们的。最低气温吗?

(2)小小气象记录员。

我们一起来当气象记录员,一边听天气预报,一边记录气温。课件演示:赤道零上40摄氏度,北极零下26摄氏度,南极零下40摄氏度。

(设计意图:在引入负数这一环节,顺接着课始“看温度计读气温”这一问题情景,从祖国三大城市的气温由高渐低相继展开,教学流畅,衔接自然。而“零上4摄氏度”和“零下4摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题不仅让学生感受到过去所学的数在表达相反意义的量时的局限性,产生学习新数的需求,而且促使他们借助生活经验联想到在“4”这个数前添加不同的符号表达相反意义的量的方法)

(二)教学例2,深入理解负数。

1、(显示珠穆朗玛峰图)谁知道它有多高吗?(8844米)这个高度是从哪儿到上顶的距离呢?

(学生回答后,在添加8844米前面添加”海拔”,并在图上添加一条海平面的水平虚线)

2、世界上也不是每个地方都比海平面高的,比如,我国的第五大盆地——吐鲁番盆地,就低于海平面155米(接在珠穆朗玛峰图旁边出示盆地图)。

大家能从刚才表示气温的方法受到启发,也用—种比较科学的方法来表示这两个海拔高度呢?(板书:+8844米—155米)

3、模仿练习。

课本第6页“练习一”第1,2题。

4、小结:通过刚才的研究,我们看到,在表示气温时,以0℃为界,高于0℃时用正数表示,低于0℃时用负数表示;在表示海拔高度时,以海平面为界,高于海平面用正数表示,低于海平面用负数表示。

(设计意图:用正负数来表示海拔高度,是学生对相反的量的再一次感知。由于前面有对气温认识的基础,所以本环节力求利用前面学习中获得的用正负数表示气温的经验和范式,在突出“以海平面为界”这一基准后,就让学生尝试解决。学生在先前经验的作用下,容易想到“高于海平面为正、低于海平面为负”的计数规则。在深层次上把握了负数产生的背景和计数的要领与方法)

三、以“比较反思”提升——深化概念的内涵

1、我们用这些数分别表示零上和零下的温度以及海平面以上和海平面以下的高度。(课件同时呈现:温度计和海拔高度图,其中0℃和海平面用红色线标出)

2、观察这些数(课件出示),你能把它们分类?按什么分?分成几类?小组讨论。小结:像+4,40、+8844这样的数都是正数,像—4,—7,—11,—155这样的数都是负数。

3、讨论:0属于正数或负数呢?(指导学生借助网络在设置的讨论区内发表意见)

引导学生辨析:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。

教师借助课件观察画有箭头的轩线(即数轴),认识到:0是下数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。

4、练习-完成第3页“练…—练”第l题(在原题中增加0)。

提问:

(1)0为什么不写?(0既不是正数,也不是负数)

(2)观察这些正数,你发现了什么?

(我们以前学过的除0以外的数都是正数)

5、出示“你知道吗?——中国是最早使用负数的国家”。

(设计意图:本课是学生初次认识负数,为了让学生对负数的内涵与外延有完整的认识,这里将温度计、海拔高度图同时出示,让学生直观地感受零度刻度线、海平面是分界点。让学生很好地借助直观情景来理解接纳正数,负数与0三者间的关系。同时在习题中注意让学生体会过去已学过的数(除0外)都是正数,以帮助学生沟通新旧知识的内在联系)

四、用“多层练习”巩固——拓展负数的的外延

1、基本练习。

每人写出5个正数和5个负数,并进行交流:读出所写的数,并判断写的是否正确。

2、对比练习。

选择合适的结果填在括号内:

20xx年,我国发射成功的嫦娥卫星在太空中向阳面的温度为()以上,而背阳面却低于(),但通过隔热和控制,卫星舱内的温度始终保持在(),保证了卫星能够正常开展探测工作。

①21℃②100℃③—100℃

3、应用练习。

(1)“生活中的负数”信息发布会。

说一说:生活中还有哪些情况也可以用正数或负数来表示?

随后课件配合出示有关图片。

(2)小结:像零摄氏度以上与零摄氏度以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股票的上涨和下跌等等都是相反意义的量,都可以用正负数来表示。

4、拓展延伸。

调查自己家一个月的收入、支出情况,并作好记录,记录后对数据进行分析,把自己的感受与家人说一说,用数学日记记下自己的感受及开支建议。

数学五年级下册教案 篇3

一、教学内容 :

课本 P88~90 例 1、例 2。

二、教学目标

1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。

2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。

3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。

三、重点难点:

求两个数最小公倍数的方法。

四、教学设计

(一)、小组长汇报“前置小研究”完成情况

怎样求3和2的最小公倍数?

第一步:3的倍数有:()

2的倍数有:()

第二步:3和2的公倍数有:( )

第三步:3和2的最小公倍数是:()

(二)、小组交流、探讨“前置小研究”

1、 要求小组内互相解决出现的错误,并能说说自己的方法;

2、要求学生说说:

(1)什么是公倍数和最小公倍数?

(2)两个数的公倍数的个数是怎样的?

(三)引课:今天我们就来探究最小公倍数(板书课题)

1、出示书P88例1题

一种墙砖长 3 dm,宽 2 dm。如果用这种墙砖铺一个正方形 (用的墙砖都是整块),正方形的边长可以是多少分米? 最小是多少分米?

(1)、学生进行讨论:

(2)、出示分别用6个、24个、54个长方形摆成的边长是6分米、12分米、18分米的正方形的动画

(3)、学生反馈:这个正方形的边长必须既是 3 的倍数,又是 2 的倍数。

(4)、还可以怎样表示求3和2的最小公倍数?

①求3和2的最小公倍数,还可以用用集合圈的方法表示 ②全班交流并板书。

可以铺出边长是 6 dm,12 dm,18 dm,··· 的正方形,最小的正方形边长是 6 dm。

3的倍数 2的倍数

6, 6 是最小的公倍数,叫做它们的最小公倍数。

2、考考你:用新学的知识解决问题:完成P89做一做

3、教学例2:怎样求 6 和 8 的最小公倍数?

(1)学生独立完成,全班交流。

(2)学生交流方法有(交流时课件演示)

①列举法:先找倍数,再找公倍数,最后找出最小公倍数。 例如:6 的倍数:6,12,18,24,30,36,42,48,?

8 的倍数:8,16,24,32,40,48,?

6 和 8 公倍数:24,48,?

6 和 8 的最小公倍数:24

②用图表示也很清楚。

③6 的倍数中有哪些是 8 的倍数呢?

你还有其他方法吗?和同学讨论一下。

教师介绍:①大数翻倍法:8,16,24,?6 和 8 的最小公倍数:24 ②分解质因数法:

数的乘积。

4、通过观察,想一想:①两个数的公倍数的个数是怎样的?②两个数的公倍数和它们的最小公倍数之间有什么关系?

5、考考你会求两个数的最小公倍数吗?

完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现? 3 和 6 2 和 8 5和 6 4 和 9

6、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

7、我能很快说出每组数的最小公倍数。

8和9() 24和8 () 30和5( ) 4和12() 36和4()48和6 () 17和13() 14和15() 23和24( )

(四)巩固练习 :书P91第1题。

(五)全课总结:通过这节课的学习,你有什么收获?

板书设计 最小公倍数

公倍数:两个数公有的倍数

最小公倍数:两个数公有的倍数中最小的那个数 找“最小公倍数”的方法:

个数的公倍数中找出两个数的最小公倍数

2、特殊情况:

①当两数成倍数关系时,这两个数的最小公倍数就是较大的数; ②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。

小学五年级数学下册教案 篇4

教学目标:

1、理解实际问题中有关和、差、倍的数量关系;

2、学会设未知数,列形如ax±b=c的方程,解决实际问题。

3、让学生体会列方程解决问题的优越性,掌握列方程解决问题的基本步骤;

4、引导学生根据问题的特点,灵活选择较简洁的算法,进而在提高解决问题的同时,培养学生思维的灵活性。

教学重点:教会学生用方程解决实际问题,学习形如ax±b=c的方程;

教学难点:分析、找出数量间的相等关系,正确列出方程;

教学过程:

一、准备:

1、口答下列方程的解是多少?

y-20=4 2x=24 a+4=7 15=3x

说说你解方程的思路?

2、说说各题中的等量关系,并列出带有未知数的方程式:

①母鸡有30只,是公鸡的2倍。公鸡有几只?

②甲数是17,是乙数的2倍。乙数是多少?

③ 足球上的白色皮共20块,是黑色皮的2倍。黑色皮有几块?

二、导入例题并教学例1

对题目进行改编,添加条件导出例1:

①足球上的白色皮共20块,比黑皮的2倍少4块。黑色皮有几块?

对这个题目的改编就是我们今天要学习的《稍复杂的方程》。

1、题中的等量关系是什么呢?

(学生分析:白皮块数与黑皮块数之间是一个什么样的关系呢?)黑皮块数×2-4=20 黑皮块数×2-20=4

2、怎样根据关系式列方程呢?

3、小组讨论怎样解答?

4、小组汇报解复杂方程的基本步骤:

①找出题中选题关系; ②写出“解、设”;

③列方程、解方程; ④检验;

三、反馈练习:

①母鸡有30只,比公鸡的2倍少6只。公鸡有几只?

②甲数是17,比乙数的2倍多5。乙数是多少?

3、讨论:小组合作怎样解决这个数学问题?

4、还能用不同的方程解答吗?

四、小结:你学会了什么?

五年级数学下册教案 篇5

教学内容

教科书第59页与复习第1,2题。

教学目标

1.通过和复习,进一步理解长方体和正方体相关知识的内在联系,并能灵活运用。

2. 在同学们对这些形体认识和理解的基础上,进一步培养空间观念。

3. 在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养同学们的

合作意识和创新。

教学重点

灵活运用知识解决实际问题。

教具学具

师:长方体、正方体模型各一个,多媒体课件。

生:长方体、正方体模型各一个。

教学过程

一、回忆所学知识

师:(出示长方体和正方体模型)同学们对这两个物体一定很熟悉吧。它们一个是长方体,一个是正方体。关于长方体和正方体你都了解了哪些知识?

学生回答,回顾本单元的知识点。

教师根据学生的回答,把本单元的主要知识点出示在黑板上。

二、系统本单元的知识

1. 揭示课题

师:今天这节课,我们就一起来对长方体和正方体的有关知识进行和复习。

2. 对知识点进行分类,做好铺垫

师:关于这一单元,我们应该从哪几方面进行呢?

生:我认为应该从长方体和正方体的特征、表面积和体积三个方面进行。

3. 分组

师:接下来,同学们以小组为单位,把这些知识点从正方体和长方体的特征、表面积和体积三

个方面进行,在时请将你的友情提示和你们还没解决的问题提出来。现在由组长执笔,把你们的内容记录在纸上。

学生分组进行交流。

在学生交流的过程中,教师巡视,对得有特色的小组,教师要心中有数,便于稍后的交流。

4. 学生汇报

师:哪个小组愿意把你们组的结果拿到前面来展示展示?

学生展示的同时要介绍一下的内容。

(第一小组介绍完以后)师:听了他们组的介绍,你能不能对他们的进行?

其他小组分别,时既要说一说优点,也要指出不足。

师:哪个小组还愿意将你们组的结果向大家展示一下?

教师请几组上来展示,时先肯定他们的努力,以寻找优点为主,指出不足为辅,激发学生

的积极性。

5. 归纳

师:刚才,同学们互相合作,出了长方体和正方体这一单元的主要内容,并且坦诚地对各

小组的进行了。对于这一单元的知识,你还有需要提醒同学们注意的地方吗?

学生自由发言。

[简评:知识是为了查漏补缺,教师在让学生时要鼓励学生大胆暴露自己的问题,寻求同伴的帮助。只有这样,才能达到提高的效果。学生在交流时,即要尊重同学的劳动成果,又要发现同学的不足。怎样处理这一对矛盾,可以借鉴这位老师的一些做法。]

三、练习提高

1. 基础练习

师:接下来,我们就利用刚才的知识解决一些实际问题。

(1)判断。

①棱长为6cm的正方体的表面积和体积相等。()

②把一个长方体分成相等的两部分,它的体积大小不变,所以表面积不变。()

③两个长方体的体积相等,表面积也一定相等。()

(2)填空。

①5800mL=()L=()dm3。

②一个保温瓶能装水4()。

③一个长方体有个顶点,在长方体的一个顶点上相交了条棱,这三条棱分别叫做长方体的。()、

()、()。

(3)学生独立完成第59页第2题。

2. 实践练习

小正方体拼合,体积、表面积的变化情况。

(1)课件演示:将5个棱长是2cm的小正方体合成一个大正方体,体积和表面积又有怎样的变

化?

(2)从这个实验中,你感受到了什么?

四、课堂

这节课复习了什么?你有哪些收获?

[简评:让学生自己回忆和知识,有利于他们主动地梳理头脑中原有的知识体系,加强理解知识间的内在联系,使知识在孩子们的头脑中形成络,进一步提高学生复习的能力。而让他们自由地独立设计或合作设计,也较大程度地激发了学生的创造性与合作性。知识的练习要针对本单元的重难点,有层次的设计使不同层次的学生都有所收获。

数学五年级下册教案 篇6

2、5的倍数的特征

【教学内容】

2、5的倍数的特征(教材第9页例1,教材第11页练习三第1~2题)。

【教学目标】

1、经历自主探索2和5的倍数的特征的过程。

2、知道2、5的倍数的特征,会判断一个自然数是不是2和5的倍数。

3、培养学生的观察、猜想、分析、归纳的能力,愿意与同学交流自己发现的结果,增强学习数学的兴趣。

【重点难点】

通过探索发现2、5的倍数的特征,判断一个数是不是2和5的倍数。

【复习导入】

师:同学们,我们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。

学生报数,老师答,同时请大家验证。

师:同学们的眼神里闪现出惊讶的目光。你们想知道老师为什么不计算就能马上判断出来吗?学了今天的知识,你们就知道老师猜数的奥秘了。

板书课题:2和5的倍数的特征。

【新课讲授】

1、探索5的倍数特征

(1)引入百数表。

(2)出示课件:百数表,在这些数中找出5的倍数,写出来。

(3)你们找的数和老师找的相同吗?(课件出示百数表)

(4)观察5的倍数,你有什么发现?把你的发现说给同桌听听。

(5)归纳:谁来概括一下5的倍数到底有什么特征?板书:个位上是0或5的数都是5的倍数

(6)验证:除了这些数以外,其它5的倍数也有这样的特征吗?请举例验证。请你写一个多位数,并且是5的倍数。

(7)过渡:学习了5的倍数的特征有什么好处?师随机在黑板上写一个数,让学生猜猜它是不是5的倍数。

(8)练一练:下面哪些数是5的倍数?

240,345,431,490,545,543,709,725,815,922,986,990。

过渡:那172是几的倍数呢?请同学验证。2的倍数有什么特征,想不想研究?下面我们一起研究2的特征。

2、探索2的倍数特征

(1)猜一猜:根据研究5的倍数特征的经验,你猜一猜2的倍数可能会有什么特征呢?

(2)课件出示:百数表找出2的倍数。(小组合作找出所有2的倍数)

(3)汇报后,观察2的倍数的特征,看看你刚才的猜测是不是正确。

(4)归纳:2的倍数有怎样的特征?

板书:个位上是0、2、4、6、8的数都是2的倍数。

(5)验证:除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。

(6)填一填:下面哪些数是2的倍数?1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

让学生独立完成后汇报。

3、奇数、偶数的再认识

自然数按是不是2的倍数来分可分为奇数和偶数两大类,2的倍数都是偶数,不是2的倍数就是奇数。

4、那么既是2的倍数又是5的倍数有什么特征呢?

(1)在5的倍数中找出2的倍数;

(2)在2的倍数中找到5的倍数。

比较:判断一个数是不是2或5的倍数,都是看什么?

结论:个位上是0的数,既是2的倍数又是5的倍数。

【课堂作业】

1、完成教材第9页“做一做” 。

2、 完成教材第11页练习三第1~2题。

【课堂小结】

1、现在,你们知道老师猜数的奥秘了吗?现在老师说数,请同学们判断出它是不是5或2的倍数。

2、通过今天的学习,你有什么收获?还有什么问题?

【课后作业】

完成练习册中本课时练习。

板书: 2、5的倍数的特征

个位上是0或5的数都是5的倍数;

个位上是0、2、4、6、8的数都是2的倍数;

个位上是0的数,既是2的倍数又是5的倍数。

通过这节课的教学,使我认识到数学课堂教学活动是一个活泼的、主动的、丰富多彩的活动空间。教学中,我从学生已有的生活经验出发,结合学生的认识规律,给学生提供有趣的情景,激发学生的探求欲望,创设观察、操作、合作交流的机会;让学生通过动脑、动手、动口,做他们想做的,在做的过程中观察知识,在合作交流中去思考、质疑。充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,使学生真正领略到数学就在我们身边,生活中处处有数学。

五年级下册数学教案 篇7

一、教学目标

1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。

2、结合具体情境,进一步体会“整数”与“部分”的关系。

二、重点难点

重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。

难点:充分体会“整数”与“部分”的关系。

三、教学过程

(一)复习旧知,导入新课

1、我们在三年级已经对分数有了初步的认识,你能举出一些分数吗说说它们分别表示什么意义

2、今天我们一起来学习《分数的再认识》。

(二)创设情境,学习新知

活动一:分笔游戏,体会单位一

1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)

2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。

3、另找4名同学检查。

4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)

5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢(每位同学的总数不一样)

6、师总结:最初每位同学笔的“整体”不同,也就是单位“1”不同造成的,所以,他们的1/2也不同。原来分数还有这样一个特点,你对它是不是又有了新的认识

活动二:教材P34说一说。

1、带着新的认识,我们来判断两个小朋友看的书一样多吗

2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗为什么学生独立思考一会,同桌交流,再全班反馈。

3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)

4、在什么情况下,他们读的一样多呢(整体相同,相同分数表示的数量也相同。)

5、请同学们再帮老师解决一个问题:王兴国吃了一个苹果的3/4,李晓阳也吃了一个苹果的3/4。王兴国说:“我俩吃的一样多”。李晓阳说:“我吃得比你多。”他们谁说得对呢

(三)巩固练习

1、教材P34画一画。

2、教材P35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

四、板书设计

分数的再认识

整体不同,相同分数表示的数量也不同。

五、教学反思

本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。

一键复制全文保存为WORD