平行四边形的面积教学设计6篇

作为一位优秀的人民教师,总归要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。一份好的教学设计是什么样子的呢?以下是为大家整理的平行四边形的面积教学设计6篇,希望可以帮助到有需要的朋友。

平行四边形的面积教学设计 篇1

教学内容:

《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。

教学目标

1.知识与技能

1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2)使学生理解转化的思想,初步学会运用转化法来解决问题。

3)培养学生的合作意识和自主探究解决问题的能力。

2.过程与方法

让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。

3.情感态度与价值观

通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。

教学重点、难点

教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。

教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

教学准备:

多媒体课件、平行四边形学具等。

教学过程:

一、设置悬念激发兴趣

师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?

[学情预设:摇头或不知道。]

(出示:中国版图)

师:请大家仔细观察,山西省近似我们学过的什么平面图形?

[学情预设:学生根据观察可能会说:四边形或平行四边形。]

师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?

[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]

师:对,这节课我们就一起来研究“平行四边形的面积”。

(引出课题并板书:平行四边形的面积)

[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]

二、动手操作引发欲望

1、回忆平行四边形的底和高。

师:同学们,平行四边形有哪些特征,你们还记得吗?

[学情预设:

生1:平行四边形对边平行、对角相等。

生2:还有底和高。]

师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?

[学情预设:学生根据不同的高,找到所对应的底。]

师:由此,你发现了什么?

生:底要和高相对应。

师:对,这一点值得注意。

[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]

2、第一次探究

师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。

(小组活动,教师巡视)

[学情预设:

生1:直接数。

生2:间接数。

生3:沿边上的高剪开。

生4:沿中间的高剪开。

生5:沿两边的高剪开。……]

师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。

(小组汇报)

[学情预设:

组1:用直接数方格的方法。]

[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]

师:哪个小组和他们的方法不一样?

[学情预设:

组2:间接数。

组3:沿边上的高剪开。

组4:沿中间的高剪开。

组5:沿两边的高剪开。……]

师:由此,你又发现了什么?

小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。

[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]

3、第二次探究

师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?

师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?

生:不能。

师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?

生:有。

[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]

(板书:长方形的面积=长×宽

平行四边形的面积=底×高)

师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。

[学情预设:学生汇报自学成果,教师板书字母公式。]

师:用字母表示平行四边形的面积公式:S=ah

小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。

即:平行四边形的面积=底×高

[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]

三、联系实际解决问题。

师:解决课前遗留问题:山西省的面积大约有多大?

[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]

四、课后延伸渗透转化

师:吉林省近似学过的什么平面图形?

生:三角形

师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。

[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]

五、板书设计:

平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

平行四边形的面积教学设计 篇2

设计理念:

利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

教学内容:

五年级上册第79-81页《平行四边形的面积》。

教学目标:

1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

2、通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

3、运用猜测—验证的方法,使学生获得积极的情感体验。发展学生自主探索、合作交流的能力,感受数学知识的价值。

学情分析:

平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

教学重点:掌握平行四边形面积计算公式。

教学难点:平行四边形面积计算公式的推导过程。

教具准备:课件、平行四边形纸片、剪刀、直尺、三角板等。

学具准备:2块平行四边形彩色纸片、三角板、直尺、剪刀。

教学过程:

课前活动:

1、游戏:小小魔术师。教师出示不规则图形。

你能将这些图形分别变成我们学过的一个平面图形吗?(强调变形后的图形形状变了,面积不变。)

2、现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过图形变形唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。

一、故事引入,激起质疑

1、故事:今天老师给大家带来了一个故事,想听吗?我看有的同学不想听!用行动告诉老师你想听。

一天,阿凡提在街上卖毛毯,地主巴依走了过来。他一眼就看中了阿凡提的花毛毯。聪明的阿凡提拿出这样的两块毛毯,分别是什么形状?

阿凡提说:“亲爱的巴依老爷,如果您能从这两块毛毯中挑出一块大的来,我就不收你的钱;可如果你选错的话,你就得答应我,把欠长工的钱全部付清,怎么样?”

巴依一听不收钱,高兴的两眼放光。他一把抓起这块长方形的毛毯说:“这块大,我就要这块!”

2、巴依认为这块长方形的毛毯大,你猜猜看哪块大?

我们说的毛毯的大小指的是毛毯的什么?

以前我们学过哪些图形的面积,计算公式是什么?

3、这节课我们继续研究面积:平行四边形的面积。(板书课题)

以前学过的长方形和正方形的面积对我们今天的学习可能会有帮助。

设计意图:思维是从疑问和惊奇开始的。以故事引入,产生疑问,从而激发学生极大的学习、探索热情。

二、动手操作,探究方法

(一)猜想

请同学们拿出学具袋中中的平行四边形,看一看,摸一摸、想一想,大胆猜测一下:平行四边形的面积怎样计算呢?

根据学生猜测,板书:可能出现(底×高或底×邻边)

根据学生的回答随机让学生画高,指名板演并强调平行四边形的高有无数条

(二)验证

1、到底哪种猜测正确呢?这就需要我们进行验证才知道。

2、思想决定行动,动手操作前建议大家先想一想:怎样才能得到这个平行四边形的面积呢?能不能把它变成以前学过的图形呢?怎么变?

3、静静地想,想好了吗?

(三)操作

1、探究活动步骤:

想好了,我们来看“深入探究活动”,分三步进行:

第一步:动手操作。为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。

第二步:结合剪拼过程,思考这三个问题:大声读出来!

深入探究学习卡

①通过剪一剪,拼一拼,我们把平行四边形变成了什么图形?

②剪拼后的图形与原来的平行四边形相比,什么不变?”

③剪拼后的图形各部分和原来平行四边形各部分之间有什么关系

第三步:把你的剪拼方法及你对这三个问题的思考和小组同学进行交流。

明白了吗?比比看,哪个小组进行的又快又好!开始吧!

2、学生活动,教师参与。

请同学上来展示,并在黑板前交流剪拼方法和对三个问题的思考。

3、汇报交流

(1)汇报剪拼过程。

一边演示,一边说说你的剪拼过程。

(2)指导规范叙述:

(板书:沿高剪平移)并追问:为什么要沿高剪?

(四)推导

1、汇报探究的三个问题。

结合剪拼过程,谁来说说你对这三个问题的思考?

①通过剪一剪,拼一拼,我们把平行四边形变成了长方形。

②剪拼后的长方形与原来的平行四边形相比,面积不变。

③剪拼后的长方形的长和原来平行四边形的底相等,长方形的宽和原来平行四边形的高相等。

2、汇报交流:面积不变,长---底,宽---高

追问:你怎么知道平行四边形的面积和剪拼后的长方形面积相等?

请每位同学选一种你喜欢的剪拼方法,像刚才同学一样,说说你对这3个问题的思考。

师板书:平行四边形的面积=底×高

长方形的面积=长×宽

设计意图:此环节留给学生充分探索、交流的空间,使学生在剪、拼等一系列实验活动中理解和掌握平行四边形和转化后的长方形之间的联系,从而为后面平行四边形面积公式的总结奠定基础。

(五)结论

1、证实猜想,得出结论:平行四边形的面积=底×高是正确的

2、用字母表示:S=ah

三、解决问题,拓展延伸

1、算一算:在我们的生活当中,平行四边形随处可见,出示情境图,你发现了哪些平行四边形?你会计算吗?

2、你能算出芸芸家这块菜地的面积吗?

题上给了这么多信息,应该怎么选择呢?试试看,你一定行!

看来,计算平行四边形的面积必须是一组相对应的底和高相乘才行啊!

3、接下来大家要加油噢!看,向你挑战!怕不怕?

下面两个平行四边形,它们的面积一样大吗?

小结:判断平行四边形的面积,只要抓住哪两个关键点就行了?

四、全课小结,完善新知:

现在大家看:哪块毛毯的面积大呢?

你猜对了吗?巴依呢?阿凡提是运用智慧获得成功!

同学们知道吗?阿凡提在人们心中是智慧的化身。这节课,我们也运用我们的智慧,利用转化的方法,探究出了平行四边形的面积。在老师心目中,你们比阿凡提还了不起!老师为大家感到骄傲!

设计意图:小结既呼应了开头的情景,也让学生感受到数学就在我们身边。数学离不开生活,生活中处处有数学。培养学生爱数学的情感,树立能学好数学的信心。

平行四边形的面积教学设计 篇3

一、教学目标

(一)知识与技能

让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。

(二)过程与方法

通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

(三)情感态度和价值观

通过活动,培养学生的探索精神,感受数学与生活的密切联系。

二、教学重难点

教学重点:探索并掌握平行四边形面积计算公式。

教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

三、教学准备

平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

四、教学过程

(一)创设情境,激趣导入

1.创设情境。

(1)呈现教材第86页单元主题图。(PPT课件演示)

教师:瞧!校园门口,你在哪些物体上看到了我们学过的平面图形?

(2)学生汇报交流。

(3)回顾:我们生活在一个图形的世界里,这些图形有大有小,平面图形的大小就是它们的面积。我们已经研究过哪些平面图形的面积?怎样计算?

预设学生回答:长方形的面积=长×宽,正方形的面积=边长×边长。

(4)引入新课:这幅图中除了有长方形和正方形,还有平行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入“多边形的面积”的学习。(板书单元课题:多边形的面积)

2.揭示本节课题。

复习引入。(PPT课件演示)

请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那平行四边形的面积怎样计算呢?今天这节课,我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

【设计意图】通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入平行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。

(二)主动探索,推导公式

1.用面积单位测量平行四边形的面积。

(1)提问:要知道这个平行四边形的面积,怎么办?(PPT课件演示)

引导学生回顾用面积单位测量图形面积的方法。

(2)操作:现在把它们放在方格纸上,一个方格代表1 m2,不满一格的都按半格计算。平行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)

(3)学生先独立数平行四边形的面积,再互相交流。

预设平行四边形的面积:

方法一:从左往右数,每行6个,有4行,平行四边形的面积是24平方米;

方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24平方米。

长方形的面积:长6米,宽4米,面积是6×4=24(平方米)。

(4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。

(5)填写表格。

①师生共同完成表格:平行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)

②引导学生观察:观察这个表格,你发现了什么?

③交流回报,小结:有的同学发现了,这个平行四边形的底与长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积与长方形的面积相等。还有的同学发现,这个平行四边形底乘以高正好等于它的面积,由此猜测平行四边形的面积=底×高。

【设计意图】面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为平行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻平行四边形面积的计算方法做准备。

2.操作思考,推导公式。

(1)教师:看来,数方格的确能让我们知道平行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算平行四边形的面积呢?

这个平行四边形的面积恰好等于底×高,那是不是所有的平行四边形的面积都等于底×高呢?看来,还需进一步研究哦!(PPT课件演示)

(2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将平行四边形转化成它们来计算面积呢?请大家借助手中的平行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。

(3)操作转化,推导公式。

①操作转化。

a.学生独立思考,动手剪拼平行四边形,将它转化成长方形后组内交流。

b.学生展示汇报。(PPT课件演示)

c.大家发现它们有什么相同之处?为什么要沿着平行四边形的高来剪开?有多少种不同的剪法?为什么?

②观察思考。

a.观察:原来的平行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)

b.思考:平行四边形的底和长方形的( )相等,平行四边形的( )和长方形的( )相等,这两个图形的面积( )。(PPT课件演示)

c.学生汇报。(教师板书)

③概括公式。

你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)

(4)回顾与小结。

①我们已经知道平行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?

②教师小结:首先把一个平行四边形沿高剪开后平移拼成一个长方形,再观察原来的平行四边形和拼接后得到的长方形,发现等量关系:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的`面积等于长乘宽,所以平行四边形的面积等于底乘高。像这样把未知的平行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。

【设计意图】在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将平行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识——沿高剪开后通过平移将平行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。

(三)巩固运用,解决问题

1.教学教材第88页例1。

(1)出示例题,呈现问题情境。(PPT课件演示)

(2)理解题意,叙述题目内容。

①用自己的话说一说题目的意思是什么?

②学生根据图文叙述:知道平行四边形花坛的底是6米,高是4米,求花坛的面积是多少平方米。

(3)收集信息,明确问题。

①提问:从题目中你获得了哪些数学信息?要求什么?

②思考:要求花坛的面积,其实就是求什么?

③归纳:要求花坛的面积,其实就是求底是6米、高是4米的平行四边形的面积。

(4)学生独立解答。

(5)学生汇报,教师板书,规范书写。

2.课堂练习。

完成教材第89页练习十九第1题。

(1)学生独立完成。

(2)同桌互相说说自己是怎样做的。

(3)全班集体交流:这个问题你是怎样算的?

【设计意图】例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。

(四)变式练习,内化提高

1.基本练习。

完成教材第89页练习十九第2题。(PPT课件演示)

(1)学生独立完成。

(2)同桌互相说一说自己是怎样算的。

(3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择平行四边形中对应的底和高来计算面积。)

参考答案:12 cm2;18.72 cm2;4.8 cm2。

2.提高练习。

完成教材第89页练习十九第4题。(PPT课件演示)

(1)理解题意:怎样计算出这两个平行四边形的面积?需要知道什么?(先测量出平行四边形中对应的底和高,再利用公式计算。)

(2)学生独立完成。

(3)全班集体交流:两个平行四边形的底和高分别是多少?怎样计算面积?

3.拓展延伸。

等底等高的平行四边形的面积一定相等吗?面积相等的平行四边形一定等底等高吗?(PPT课件演示)

【设计意图】通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。

(五)全课总结,畅谈收获

1.今天这节课学习了什么?怎样学的?

2.今天我们主要推导出了平行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了平行四边形的面积;再观察表格中的数据,猜测平行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的平行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的平行四边形与长方形之间的等量关系,从而推导出了平行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量——观察——猜测——转化——验证的过程,最后我们还利用公式解决了生活中的实际问题。

(六)作业练习

1.课堂作业:练习十九第5题。

2.课外作业:练习十九第3题。

平行四边形的面积教学设计 篇4

1、通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

2、通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

3、运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。

探索并掌握平行四边形的面积计算方法。

理解平行四边形面积计算公式的推导过程。

电子白板课件、平行四边形模型、剪刀、初步探究学习卡

一、课前引入、渗透转化。

1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?

2、播放制作七巧板的视频。

3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。

二、创设情境,揭示课题。

1、电子白板导出两个花坛,比一比,哪个大?

2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。

三、对手操作,探究方法。

1、利用数方格,初步探究

2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”

四、白板演示,验证猜想。

1、探索把一个平行四边形转化成已学习过的图形。

2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。

3、平行四边形的面积=底×高

4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。

五、巩固练习,加深理解。

1、课件出示例1

2、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件

六、课堂小结,反思回顾。

回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?

平行四边形的面积教学设计 篇5

教学内容分析:

平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。

设计的理念:

学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。

教学目标:

1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2. 通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。

3. 引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。

教学重点:

使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

教学难点:

通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。

教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。

教学过程:

一、创设情境、导入新课。

多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。

师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

生:会计算长方形面积,不会计算平行四边形的面积。

师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)

[设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。]

二、探究平行四边形的面积。

1. 用数方格的方法探索计算面积。

师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?

生1:我想把平行四边形拉成一个长方形。

生2:我想用数方格子的方法来计算。

……

师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。

(2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。

说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一齐来交流一下是是怎样数的,请把数出的结果填在表格中。

同桌合作完成:

4. 汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?

平行四边形

面积

长方形

面积

通过学生讨论,可以得到平行四边形与长方形的底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

[设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。]

2. 推导平行四边形面积计算公式。

(1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?

生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。

师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。

(3)分组合作动手操作,探索图形的转化。

各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。

生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。

引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。

用多媒体演示平移和拼的过程。剪——平移——拼。

[设计意图:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。]

(4)小组讨论,合作交流,探索平行四边形的面积计算公式。

我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论后,根据学生回答情况出示讨论题目给学生。

拼出的长方形和原来的平行四边形相比,面积变了没有?

拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

[设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。]

(5)小组交流汇报,归纳叙述出自己的推导过程。

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?

因为:长方形的面积=长×宽,

所以:平行四边形的面积=底×高

如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah

学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)

3、平行四边形面积计算公式的应用。

既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。

(1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?

生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。

(2)运用平行四边形面积计算公式让学生自学例1。

师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。

学生板书例1的结果;s=ah=6×4=24(平方米)

[设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。]

三、巩固拓展。

1、给下面各题目填空。

(1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是( )平方厘米。

(2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是( )平方米。

(3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是( )平方分米。

[设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。]

2、你能想办法求出下面两个平行四边形的面积吗?

3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。

[设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。]

四、课堂总结

通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。

请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?

板书设计:

长方形的面积=长×宽

平行四边形的面积=底×高

用字母表示是:S=a×h= a·h= ah

平行四边形的面积教学设计 篇6

[课程标准]

探索并掌握平行四边形的面积公式,并能解决简单的实际问题。

[学情分析]

学生在前期的学习中,已经认识了平行四边形,并且会画出平行四边对应底边上的高,还会计算长方形的面积,这些都是本节课学习可以利用的基础。对于平行四边形,学生在日常生活中已经经历过一些感性例子,但不会注意到如何计算平行四边形的面积,学起来有一定难度。经调研发现,学生对数方格的方法、剪拼法有一定的了解,但是让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系是一个难点,需要学生在探索活动中,循序渐进、由浅入深地进行操作与观察,从而使学生进一步理解平面图形之间的变换关系,发展空间观念。

鉴于此,帮助学生理解平行四边形转化成长方形后长方形的长和宽与平行四边形底和高的关系是教学的关键所在。所以,从学生的剪拼、观察交流到借助课件的演示,都在引导学生理解图形间的关系。

[学习目标]

1、通过操作活动,经历推导平行四边形面积计算公式的过程,能用语言叙述出平行四边形面积的推导过程,得出平行四边形的面积公式。(CS)

2、能运用公式计算平行四边形的面积,并能解决一些相关的实际问题。(CS)

[评价任务]

评价任务1:完成活动1,活动2,活动3,活动4,活动5,活动6,活动7,推导出平行四边形的面积公式。

评价任务2:完成活动8和练习1,练习2,练习3,运用平行四边形面积公式解决相关的实际问题。

[资源与建议]

1、本节课是小学数学人教版五年级上册第六单元“多边形的面积”的第一课时,是学生在掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,学好这节课同时又是进一步学习三角形面积、梯形面积、圆的面积的基础。教材引领学生经历“提出问题——猜测——验证——推导——解决问题”这样一个过程,整个安排体现知识的形成过程,渗透转化的思想,为后面学习其它平面图形面积公式的推导建立模型。

2、相关的资源:(1)多媒体课件,主要依托课件进一步演示平行四边形转化成长方形的的过程,找出联系,帮助学生顺利推导出平行四边形的面积公式。(2)平行四边纸和剪刀,主要是让学生通过剪拼把平行四边形转化成长方形,让学生经历平行四边形面积公式的推导过程,渗透“转化”思想。

3、本课时的学习按以下流程进行:情境导入用数方格的方法数出平行四边形的面积把平行四边形转化成长方形推导出平行四边形的面积公式巩固应用。

4、本节课的重点是掌握平行四边的面积计算公式,并能正确运用公式解决问题,通过操作活动和应用检测来突出重点;本节课的难点是平行四边形面积计算公式的推导。主要通过剪拼、交流和课件演示来把平行四边形转化成长方形,找出长方形和平行四边形的关系,从而顺利推导出平行四边形的面积公式。

[教学过程]

一、情境导入

出示两个美丽的花坛:请大家观察一下,这两个花坛哪一个大呢?

师:大家各有各的看法,要比较它们的大小其实上是比较它们的面积,长方形的面积怎么算吗?(长方形的面积=长×宽)那平行四边形的面积你会计算吗?今天我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)

[设计意图:通过观察情境图,明确要比较哪个花坛大,就得知道这两个花坛的面积,从而确定本节课学习内容:怎样计算平行四边形的面积?]

二、探究新知

1、用数方格的方法计算平行四边形的面积。师:我们以前在研究长方形面积时用到了数方格的方法,今天我们也先用数方格的方法。

(1)先看要求(女生读要求):一个方格代表1平方米,不满一格的都按半格计算。

(2)、活动1:打开课本87页,在方格纸上数一数,并把表格填一填。(PO1)

(3)、活动2:小组讨论:仔细观察这些数据,你发现了什么?(PO1)

生:平行四边形的底与长方形长相等,平行四边形的高与长方形宽相等,平行四边形面积底与长方形的面积相等。

生:我发现平行四边形的面积=底×高

师:平行四边形底6高4面积24,平行四边形的面积=底×高,这是不是一个巧合呢?是不是所有的平行四边形的面积都等于底×高,这只是我们的猜测,下面我们来验证一下。

[设计意图:通过让学生观察所填数据,发现长方形的长和宽与平行四边形底和高的关系,为后面推导平行四边形的面积公式做准备。]

2、合作交流探究新知

(1)、活动3:小组讨论:小组商量一下,你们准备用什么方法,把平行四边形转化成我们学过的哪个图形?怎样转化?

(2)、活动4:动手操作

以小组为单位,请大家利用准备好的平行四边形和剪刀动手试一试,通过剪,拼等方法把一个平行四边形转化成长方形,然后把你的操作过程在小组内说一说。(PO1)

(3)、活动5:学生汇报、交流。

师:好多小组已经做好了,哪个同学愿意给大家展示一下,到台前来,

(边演示边说剪拼过程,并贴剪拼图于黑板。)

师:你转化成了什么图形?你是怎样把平行四边形转化成长方形的?

你是沿着平行四边形哪条线剪的?(其中一条高)不沿着高剪行吗?为什么?(这样才可以得到直角)沿着斜的方向剪开,能拼成一格长方形行吗?

哪个小组和他剪的不一样?

师:看来沿着平行四边形任意的一条高剪开,然后平移都能转化成一个长方形。

(4)、大屏幕演示不同的拼法。

(5)、活动6:小组讨论

师:我们运用了转化的方法把平行四边形转化成平行四边形,请大家结合刚才的剪拼过程,回想一下刚才的剪拼过程,观察原来的平行四边形和剪拼出的长方形,思考以下三个问题,围绕这些问题进行讨论:(PO1)

小组讨论:

a、拼成的长方形的面积和原来平行四边形的面积—————。

b、拼成的长方形的长与原来平行四边形的底———————。

c、拼成的长方形的宽与原来平行四边形的高———————。

(6)学生汇报,教师总结板书:

师:我们把一个平行四边形转化成为一个我们学过的长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

教师板书平行四边形的面积=底×高,

(7)活动7:谁能把这个过程完整的说一遍,谁再完整的说一遍。(DO1)

(8)介绍板书字母式。

师:我们经过大胆猜测,操作验证,推导出平行四边形的面积=底×高,如果我们用S表示面积,a表示底,h表示高,那么平行四边形的面积公式就可以表示为S=ah。

观察这个公式,我们可以发现,要求平行四边形的面积必须知道什么条件?(底和高)现在会求平行四边形花坛的面积吗?

[设计意图:学生在操作、交流、归纳中探究出了平行四边形的面积公式,经历了知识形成的过程,加深了对知识的理解,并且凸显了“转化”思想的作用。]

三、实践应用

活动8;学习例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?试一试吧(一人上前做,其余学生在练习本上做),学生回答。(PO2)

[设计意图:在明确平行四边形的面积公式后,让学生会利用公式解决实际问题。]

四、课堂检测

1、练习1:看图计算平行四边形的面积:(单位:厘米)(DO2)

2、练习2:你能算出芸芸家这块菜地的面积吗?(DO2)

3、练习3:有一块平行四边形的玻璃,面积是840平方分米,底是30分米。这块玻璃的高是多少分米?(DO2)

[设计意图:通过不同习题的练习,巩固对平行四边形面积公式的应用。]

五、全课小结。

想一想你这节课学到了什么?

板书设计:平行四边形的面积

长方形的面积=长×宽

↓↓↓

平行四边形的面积=底×高

S=a×h

=ah

=ah

一键复制全文保存为WORD