作为一位不辞辛劳的人民教师,总归要编写教案,教案是备课向课堂教学转化的关节点。优秀的教案都具备一些什么特点呢?
教学目标:
知识与技能:通过复习,使学生进一步理解用字母表示数的作用,能用含有字母的式子表示计算公式、运算定律、数量关系;渗透初步的代数思想,体会数学知识与现实生活的密切联系,感受用字母表示数的简洁性。
过程与方法:通过复习,使学生进一步理解方程的意义,理解题中的等量关系,能正确列出方程,并熟练的运用等式的基本性质解方程,养成检验的好习惯。
情感、态度与价值观:通过复习,培养学生的归纳、比较、分析能力,进一步沟通知识间的联系,使学生的知识结构更加系统、完整。
教学重点:运用方程解决实际问题。
教学难点:根据情境中的等量关系正确列方程解决问题。
教学方法:复习回顾,质疑引导;小组合作与独立学习相结合。
教学准备:多媒体。
教学过程
一、沟通联系,构建网络。
生齐读题。
师:以前我们用算术方法解这一类题,学习简易方程后,又能用列方程来解答,今天这节课我们来复习“简易方程”(板书课题),请你列方程解答。
学生独立完成,师巡视,找出不同的解法展示。反馈,集体订正。
师:列方程解决问题第一步都是要干什么?
师:用字母x表示未知量。(板书:字母--量)
2、复习用字母表示数。
⑴用字母表示数
师:用字母可以表示一个具体的量,也可以表示一个数,那这个字母“X “可以表示多少?(生反馈)对了,这个字母可以表示所有的数。(板书:数)
⑵用字母表示数量关系。
师:现在有一个”比x的4倍多13的数“,怎样表示呢?
师:这个含有字母的式子除了表示数,还可以表示什么?
师:用含有字母的式子既能表示一个数,又能表示两个数之间的关系。(数量关系)
⑶师:这些含有字母的式子分别表示什么?请在答题卡上用线连起来。
2ɑ与2ɑ相加ɑ+2b
2ɑ与2ɑ相乘4ɑ2
ɑ与b的和的2倍4ɑ
ɑ与b的2倍的和2(ɑ+b)
反馈:前两题一题一题问对吗,再问这两题有什么区别?
后两题一题一题问对吗,再问这两题有什么不同?
师:用含有字母的式子表示这些意义真简洁、明了。
3、复习方程与解方程。
⑴复习方程
①当x =5时,这个数是多少呢?
师:当x有一个具体的值时,这个含有字母的式子也有一个具体的值。
②师:如果”比x的4倍多13的数是45。“现在又该怎样表示?
师:这样的等式我们把它叫做…?(生:方程。)
师:谁来说说什么叫方程?方程与等式有什么关系?举例说明。
⑵复习解方程
师:刚才同学们解了一道方程,这里还有3道方程,你们能解吗?
练习:教材第118页练习二十五第17题。解方程
x ÷1.44=0.4 3.85+1.5x =6.1 6x -0.9=4.5学生解方程,汇报。
师:我们运用等式的基本性质,在等式两边同时加减同一个数,同时乘或除以同一个不为0的数,逐步简化方程,得到方程的。解。在这里所指的数可以是像这样已知的数,也可以是这样用字母表示的未知数。
师:x =1.6是这道方程的解吗?指名口头检验。
4、复习用方程解决问题。
(1)复习用方程解决问题的一般步骤。
师:解方程的目的是为了解决一些实际问题,列方程解决问题有哪些基本步骤?
学生回忆梳理出一般步骤。
师:在这几步中� 请你们找出它们的等量关系,并说出方程。
①一个梯形的面积是265平方米,上底是20米,下底是33米,高x米。
等量关系式:列方程式:
师:计算公式也是一种数量关系。
②小明买了8个作业本,每本x元,付给营业员5元,找回2.6元。
等量关系式:列方程式:
师:根据不同的等量关系可以列出不同的方程。一般我们选择容易解的方程来解决问题。
师:下面请根据方程选择合适的条件。和同桌说一说你的你的想法。
甲筐有桔子60千克,乙筐有桔子多少千克?
设:乙筐有桔子X千克。列出方程是:2X+4=60
①甲筐比乙筐的2倍还多4千克
②乙筐比甲筐的一半少4千克
③乙筐比甲筐的2倍还多4千克
④甲筐比乙筐的一半少4千克
师:你们补上的条件,正是这道题的关键句子,它能帮助我们找到等量关系。
(2)对比质疑突出优化。
师:让我们回到教材第118页第19题,注意分析题题目的意思,同学们会列方程解答吗?独立完成,反馈。
师:这题与求地球赤道长度那一题有什么不同?有什么相同?(生反馈)
师:看来,在这里,不论是一个未知数还是两个未知数,都能用列方程解答。
二、拓展提高
教材第118页思考题。
一座大桥长2400M,一列火车以每分钟900M的速度通过大桥,从车头开上桥到车尾离开桥共需3分钟,从车头开上桥到车尾离开桥共需3分钟。这列火车长多少米。
分析:如教材第118页图,考虑到火车自身的长度,通过大桥所走的路程包括大桥长度和车长,根据”路程=速度×时间“可设这列火车车长为x m,可列方程:
x +2400=900×3
三、全课小结。师:这节课,我们复习了简易方程,请记住用字母表示数是方程的基础,方程是为列方程解决问题服务的。
布置作业:教材第113页第3题(1)(2)及练习二十五第18题
板书设计
简易方程复习
字母--量、数、数量关系
等式的基本性质
关键--等量关系
教学过程:
一、导入。
1、手引发的思考。
师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?
师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。
2、提问:每年的3月12日是什么日子?(点出植树的好处,进行思想教育。)揭题。(板书课题)
二、新课探究。
1、出示题目:同学们在校园小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?【学生读题,分析题意。】
2、学生大胆猜测。让学生利用学具表格完成对因为长度不定的猜想,展示学生的猜想:(由于长度的不同,学生出现的情况不同,但总是会出现棵数比间隔数多一)
理解:“间隔”、“间隔数”、“棵数”。
3、验证,建立数模。(学生分小组亲自动手验证)
棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。
课件显示:隔5米种一棵,再隔5米种一棵……,一直画到100米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。
引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?
让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。
4、发现规律。
学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。
师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?
课件动态演示:一个间隔对应一棵,这样一直对应下去,100个间隔就有100棵,种完了吗?
师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。
5、总结归纳,应用规律,完成例1的学习。
归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。
师:你们能用一个式子把规律表示出来吗?
【板书】间隔数+1=棵数棵数-1=间隔数
学生完成课本例1的学习、解答。
6、联系生活
在我们生活中存在着很多类似植树问题的现象,你发现了吗?(让学生找出生活中的有关植树问题原理的实例)
让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。
三、巩固练习。
1、点击生活。
(1)一排同学之间有7个间隔,这一排有()个同学。
(2)工人叔叔要在路的一边安装路灯,一共安装了6座。从第一座到最后一座一共有()个间隔。
2、解决问题。
(1)5路公共汽车行驶路线全长12km,相邻两站之间的距离都是1km。一共设有多少个车站?(2)在一条全长2km的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?3、拓展练习
园林工人沿一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
四、课堂总结。
五、作业:课本P109练习二十四第1、3题。
板书设计:
植树问题
(两端要栽)
全长÷间隔长度=间隔数间隔数+1=棵数
100÷5=20(个)20+1=21(棵)
答:一共要栽21棵树。
“植树问题”是人教20_版五年级上册“数学广角”的内容,教材将它分为以下几个层次:“两端都栽”、“只栽一端”、“两端都不栽”、“封闭图形情况”以及”方阵问题”等。本节课要解决的是两端都栽的植树问题,主要目标是向学生渗透一一对应的数学思想,初步感悟“化归”的解题方法,构建植树问题数学模型。设计教学时,我运用“问题导学,互动探究”的教学模式,即以问题情境为载体,进行自主学习,以认知冲突为诱因,展开合作探究,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。根据学生的认知规律,我设计了以下几个环节:
一、观看图片,寻找数学信息,让学生初步认识间隔,感知间隔数与手指数的关系。
二、以一道植树问题为载体,放手让学生自主学习,应用不同方法解决问题,引发学生认知冲突。
三、抓住课堂生成的契机,以生活中植树问题的应用为研究对象,再度质疑,引导学生合作探究植树问题的实质。
四、多层次、多角度的达标测评练习,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
1、通过自主探索的活动,让学生获得学习成功的体验,增进学生学好数学的信心。结合学生的年龄特点和教学内容,我设计了很多孩子喜闻乐见的'教学环节。例如:在问题导入时,让学生根据不完成全的应用题,对缺少条件的应该题大胆进行猜测,激发学习兴趣。再如:自主学习、互动合作这一环节中让学生选择自己喜欢的方法解题、验证“间隔数”与“棵数”之间的规律。
2、渗透一一对应的思想方法,培养学生数学思维能力和解决问题的能力。让学生通过观察、猜测、实验、交流等活动,既学会一些解决问题的一般方法和策略又逐步形成求实态度和科学精神。
3、注意反映数学与人类生活的密切联系。
本节课的教学内容本来就是来自于生活,通过观察生活找出解决这类问题的规律,从而应用于生活。所以,我设计的每一环节都紧扣生活,以解决生活中的问题为主线,有目的地进行数学学习活动,使学生学得有趣,同时,增强了数学学习的应用价值。
4、本课的练习本着由易到难,循序渐进的原则,有以下两个层次:
(1)直接应用,解决比较简单的实际问题。在巩固练习中,我安排学生完成已知间隔数求棵数及已知棵数求间隔数的两道填空题,以及“做一做”中知道总长和间距求棵数的练习,让学生从正反两个方面出发解决简单的实际问题。训练学生双向可逆思维的能力。
(2)现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它。如上楼梯、排队、敲钟、锯木头等,所以在后面的提高练习中,我把这些生活中常见的现象编进题目中,让学生拓宽视野,解决生活中不同现象的“植树问题”。
这节课的不足是过于侧重于植树问题的原理,课堂的练习密度不够,从练习中也反馈出个别学生吃不透的现象。所以今后教学时要注意把握好度,适当进行取舍,照顾好中差生。
一、学习目标
(一)学习内容
“正方体的认识”是《义务教育教科书数学》(人教版)五年级下册第三单元第20页例3以及课后做一做。本节内容是在学生已经直观的认识了长方体、正方体等立体图形的基础上进行教学的。学生能通过实物或模型辨认正方体,知道正方体有6个面,每个面都是正方形。在教学正方体时,应激活经验,回顾特点,对比长方体特点,感知“正方体是特殊的长方体”。
(二)核心能力
能运用迁移类推的学习方法,通过观察、操作,认识正方体,建立空间观念,提高分析对比,抽象概括的能力。
(三)学习目标
1、在认识长方体的基础上,通过观察正方体、动手操作折正方体,自主探究正方体关于面、棱、顶点的特征,建立空间观念。
2、通过对比分析长方体和正方体的特征,抽象概括出长方体和正方体之间的关系。
(四)学习重点
掌握正方体的特征,理解长方体和正方体的关系。
(五)学习难点
建立空间观念,形成立体图形的初步印象。
(六)配套资源
实施资源:《正方体的认识》名师教学课件,各种正方体实物,长方体模型,剪好书本第123页的正方体展开图。
二、学习设计
(一)课前设计
(1)长方体的特征有哪些?我们是从几方面来认识它的?请自己整理出来。
(2)请找找生活中的正方体物品,并思考:关于正方体你都知道了哪些知识?
(二)课堂设计
1、谈话导入
师:课前让同学们寻找生活中的正方体物品,谁来和大家分享一下你找到了什么?
师:生活中有许多物体的形状是正方体,正方体也叫立方体,这节课我们一起来认识它。板书课题。
【设计意图:结合生活实际,学生对正方体已有一定的认识,因此通过分享学生在生活中找到的正方体,使学生对正方体有了初步的了解,激发了进一步学习正方体的兴趣。】
2、问题探究
(1)观察模型,探究特征
师:长方体和正方体都属于立体图形,回想一下,我们是从几方面来认识长方体的?
(面、棱、顶点,长宽高)
师:对于正方体,你们准备从几方面来认识?
生自由发言。
师:现在请你们借助手中的正方体物品来观察研究,看看正方体都有哪些特征?
同桌合作,自主探求正方体的特征。
交流汇报。(汇报时重在交流探究的过程和方法)
预设:
①正方体有6个面,每个面都是正方形并且6个面都相等;
②正方体有12条棱,每条棱都相等;
③正方体有8个顶点。
小结:同学们从棱、面、顶点三方面进行研究,得出了“正方体是有6个完全相同的正方形围成的立体图形,12条棱长度相等”的结论。
(2)制作模型,加深认识特征
师:认识了正方体的特征,现在请你们动手制作一个正方体,制作完后,量出它的棱长是多少厘米,并向同桌介绍你制作的正方体的特征。
用剪好的书本第123页的正方体展开图做一个正方体。
展示学生作品分享制作感想。
【设计意图:学完长方体后,学生已明确了面、棱、顶点的概念,知道了从哪些方面探究图形特征,因此放手让学生自主探究,充分经历自主探究的过程,通过观察、动手,学生亲身感知正方体这个立体图形。考查目标1】
(3)对比观察,探究长方体和正方体的关系
师:我们都是从面、棱、顶点来认识长方体和正方体,它们之间有什么相同点和不同点呢?请4人小组,用你们喜欢的方式整理出来。
交流汇报后,教师用表格的形式进行整理。
引导归纳长方体和正方体的关系:正方体可以看成是长、宽、高都相等的长方体。
3、巩固练习
(1)第20页的做一做。用棱长为1cm的小正方体搭一搭。
①搭一个稍大一些的正方体,至少需要多少个小正方体?动手试一试。
②用12个小正方体搭一个长方体,可以有几种不同的搭法?记录搭的长方体的长、宽、高。
③搭一个四个面是正方形的长方体,其余两个面有什么特点
4、课堂总结
师:通过这节课的学习,你有什么收获?
小结:从面、棱、顶点三方面认识了正方体,有6个面,都相等,12条棱也都相等,有8个顶点,正方体是特殊的长方体。
[教学目标]
1:理解小数除法的意义。
2:掌握小数除以整数(恰好除尽)的计算方法。
[教学重点]小数除法的意义,小数除以整数(恰好除尽)的计算方法。
[教学难点]商的小数点与被除数的小数点对齐。
[教学过程]
一、导入新课,创设情境,提出问题
1、淘气打算去买牛奶,你从图上得到了什么数学信息?
2、根据图上的数学信息,你能提出哪些数学问题?
3、教师根据学生提出的问题,引导学生列出算式:
11.5÷512.6÷6
引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数)
师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的牛奶。
二、探索新知,解决问题
1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。
引导学生结合自己的生活经验和已经掌握的知识先自己想一想,并且尝试计算,然后在小组内讨论交流一下想法。
2、学生交流讨论,老师巡视指导。
3、请小组选派代表汇报讨论结果,指名学生板演。
4、老师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?学生可能会将11.5元转换为115角进行计算,老师应追问:为什么要化成115角进行计算?让学生进一步明确将小数转化成整数进行计算的思想和方法。也可能有学生直接运用竖式进行计算,老师应大胆放手让学生说出自己的想法,引导出“商的小数点与被除数的小数点对齐”。
5、理解算理:师生共同探究“商的小数点为什么要与被除数的小数点对齐”。先让学生说出自己的观点,再进行引导。将11.5元平均分成5份,先将11平均分成5份,每份是2元,还剩1元,再将1元看作10角,加上5角,一共15角,平均分成5份是3角,3的单位是角,写成以元为单位的小数时,3应该写在十分位上,因而小数点在3的前面,正好与被除数的小数点对齐;或个位上的1是10个十分之一,加上十分位上的5,总共是15个十分之一,平均分成5份,每份是3个十分之一,因而小数点应在3的前面。教师视学生回答角度进行引导阐释。
6、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法;商的小数点与被除数的小数点对齐。
7、学生尝试计算乙商店牛奶价格,注意商的小数点与被除数的小数点对齐。
三、巩固练习,拓展延伸
1、完成教材第3页练一练第1题。
2、我是小小神算手。
20.4÷496.6÷4255.8÷31
引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。
3、完成教材第3页练一练第4题。
四、总结:今天你有什么收获呢?小数除法在竖式计算中有什么要注意的?
第一课时小数乘以整数
教学内容:P2例1,做一做,P3例2,做一做,P7练习—第1~4题。
教学目的:
1.使学生理解小数乘以整数的计算方法及算理。
2.培养学生的迁移类推能力。
3.引导学生探索知识间的联系,渗透转化思想。
教学重点:小数乘以整数的算理及计算方法。
教学难点:确定小数乘以整数的积的小数点位置的方法。
教学过程:
一、导入新课
1、让学生观察学案表格中因数和积的变化,并说说发现了什么。
2、猜一猜:3.5×3=?为什么?
二、引入尝试
大家喜欢放风筝吗?今天我就带领大家一块去买风筝。
1.小数乘以整数的意义及算理。
出示例1的图片,引导学生理解题意,从图中你了解到了哪些数学信息?
⑴例1:燕子风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
⑵汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元
用乘法计算:3.5×3=10.5元
3.5元=35角 35×3=105 105角=10元5角=10.5元
理解3种方法,重点研究第三种算法及算理。
⑶理解意义:为什么用3.5×3计算? 3.5×3表示什么?(3个3.5或3.5的3倍。)
(4)初步理解算理。怎样算的?
(6)买5个4.8元的风筝要多少元呢?会用这种方法算吗?P2做一做
2.小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的和 0.72×5你们会算吗?能不能将它转化为已学过的知识来解答呢?(生试算,指名板演。)
(1)做完后,小组讨论计算过程。
(2)强调依照整数乘法用竖式计算。
(3)示范: 0. 7 2 扩大100倍 7 2
3.6 0 缩小到它的1/100 3 6 0
引导性提问:
0.72变成72发生了怎样的变化?
72×5算完了,再该怎么办?
为什么要缩小到它的1/100?
(4) 回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大
了100倍,要求原来的积,就把乘出来的积360再缩小到它的1/100。(提示:根据小数的基本性质, 将小数末尾的0可以去掉)
●注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。
(5)小结小数乘整数计算方法
三、巩固练习
1.计算
7 ×425×7
0.7×4 2.5×7
观察这2组题,想想与整数乘整数有什么不同?
2、竖式计算2.05×4=? 12.4×7=? 2.3×12=?
组内互评,纠错。
3.解决问题
我家到学校大约1.3千米,每天从家到学校往返要走多少千米?一周(按5天)要走多少千米?组内互评,纠错。
四、说说自己的学习所得。
板书设计:
课题:小数乘以整数
用加法计算:3.5+3.5+3.5=10.5元
用乘法计算:3.5×3=10.5元
把3.5元看作35角
3.5元扩大10倍 3 5
1 0. 5 元 缩小到它的1/10 1 0 5
105角就等于10.5元
课后反思:
今天的教学法在学生预习后显得十分顺利,但在预习与作业中也暴露出一些问题需要注意:
1.第二个因数是两位数的小数乘法该怎样计算,由于教材中并无此类例题,要适当补充指导。
2.小数乘整数的竖式书写格式要强调到位。
3.计算中积的小数点末尾有0时,如何确定小数点的位置。
4.计算结果中小数点末尾的0没去掉,化简。
0、 7 2 扩大100倍 7 2 3.6 0 缩小到它的1/1003 6 0
第二课时 小数乘小数
教学内容:P4例3,做一做,P5例4,做一做,P8—9练习一第5—9,13题。
教学目的:
1.掌握小数乘法计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
2.正确地计算小数乘法,提高计算能力。
3.培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重点:小数乘法的计算法则。
教学难点:积的小数位数和小数点的定位,积小数位数不够的,要在前面用0补足。
教学过程:
一、复习导入
1、列竖式计算。
1.2×80.8×12 16.7×3
2、小组内说一说,你是怎样计算的?
二、探索尝试
1.出示例3图:同学们最近我们校园宣传栏的玻璃碎了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书: 0.8 ×1.2)
2.尝试计算
师:观察算式和前面所学的算式有什么不同?
这就是我们要学的“小数乘小数”,两个因数都是小数,怎样计算呢?和同桌讨论一下,然后自己尝试练习,指名板演:
1、 2 扩大到它的10倍 1 2
× 0. 8 扩大到它的10 倍×8
0.9 6缩小到它的1/1009 6
3.1.2×0.8,刚才是怎样进行计算的?
引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。
4.观察一下,因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。) 想一想:6.05×0.82的积中有几位小数?6.052×0.82呢?
5.小结小数乘法的计算方法。教学例4
计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点?(要在前面用0补足,再点小数点。)
通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3) 根据学生的回答,逐步抽象概括出P.5页上的计算法则,并让学生打开课本齐读教材上的法则。(勾画做记号)
三、练习提高
1、 3.7×4.6 0.29×0.07 6.5×8.4说说如何计算以及该注意些什么?
2.竖式计算。
1.8×2.3 0.37×0.4 1.06×25
7×0.860.6×0.39 27×0.43
四、体验:回忆这节课学习了什么知识?
五、作业 :P8第7.9题,P9第13题
板书设计:
小数乘小数
1、 2 扩大到它的10倍1 2
× 0. 8 扩大到它的10 倍×8
0.9 6 缩小到它的1/100 9 6
课后反思:
经过预习学习效率大大提高,两道例题能在一课时内完成, 且还留有较充分的时间做课堂作业。 作业中的主要问题有以下几种:
1.竖式格式不正确。如有的学生将小数乘法和小数加法的格式混淆,写竖式时错将小数点对齐。
2.小数点定位存在问题。1.06×25有个别学生认为25是两位小数,所以出现积的小数点定位错误。
第三课时 较复杂的小数乘法
教学内容:P6例5,做一做,P9练习一第10—12,14题。
教学目的:
1.使学生进一步掌握小数乘法的计算法则,并能正确计算。
2.初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
3.理解倍数可以是整数.也可以是小数,学会解答倍数是小数的实际问题。
4.养成认真计算,及时检验的良好学习习惯。
教学重点:运用小数乘法的计算法则;正确计算小数乘法。
教学难点:正确点积的小数点;初步理解和掌握上述规律。
教学过程:
一、复习准备:
1.口算:
0.9×67×0.081.87×00.24×21.4×0.3
0.12×61.6×54×0.2560×0.52×0.34
2.不计算,说出下面的积有几位小数。(P9第10题)
3.思考并回答。
(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?
4.揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。
二、新授:
同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”
1.教学例5:非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍,鸵鸟的最高速度是多少千米/小时?
⑴想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的最高速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)
⑵是这样的吗?我们一起来算一算?
①怎样列式?
②为什么这样列式?(求56的1.3倍是多少,所以用乘法。)
⑶生独立完成,指名板演,集体订正。
⑷算得对吗?用什么方法可以判断他做正确没有?
方法1:把因数的位置交换一下,再乘一遍;
方法2:用计算器来验算;
方法3:用原式再做一遍;
方法4:观察法。因为第二个因数大于1, 所以积一定大于第一个因数。
师:所以每个小朋友要养成认真做题, 仔细检查的良好习惯。
⑸通过刚才同学们的计算.验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。
2.看乘数,比较积和被乘数的大小。
教学目标:
知识技能目标:
知道字母能表示什么,能用字母表示出简单问题中的数量关系,通过生活实例,使学生初步感受到用字母表示数的作用和优点。
过程与方法目标:
体会字母表示数的意义,形成初步的符号感;
情感与态度目标:
在激发学生求知欲和好奇心、感受数学符号的简洁美的同时,体会到合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气。
本课重点:
用字母表示数和简单的数量关系。
本节课的关键是让学生理解用含有字母的式子表示数量的意义,从中体会它的优越性,但由于学生是第一次接触没有具体数字的数量,因此把文字语言转化为符号语言是本节课的难点。
教学过程:
一、
师:同学们,我们来轻松一下好吗?(课件反复播放ABC英文歌曲。学生跟着唱)
师:刚才的唱的内容是什么?(英文字母歌)
师:谁能来说说我们生活中还有哪些地方用到字母? (生答)
师:是呀,字母在我们生活中有许多广泛的应用,刚才所说,在音乐简谱中它表示音高,在车牌号上可以表示一个地区……同样,在数学学习中也常常用字母来表示数量,这节课我们就来研究怎样用字母和含有字母的式子表示数量。(板书课题:用字母表示数)
二、
1、师:瞧大屏幕,老师给大家带来了两个盒子,一个装着乒乓球,另一个装着羽毛球。又知道“羽毛球比乒乓球多3个”,问:你来猜猜看,盒子里的羽毛球和乒乓球各有几个?
(课件出示两个分别写着“羽毛球”和“乒乓球”的盒子再出示“已知羽毛球比乒乓球多3个”这个条件。)
(根据学生的回答在黑板上填表)
乒乓球个数
羽毛球个数
师:我们已经猜出了5种可能性,还有其他可能吗?(有)那我们用省略号来表示剩下的可能性,好吗?
师:如果我们刚才继续猜下去,这两种球的个数能猜得完吗?那可怎么办?谁能够想出一个简单的法子来表示呢?
生汇报,师板书。如:乒乓球:a 羽毛球:a+3
还可以怎样表示? 羽毛球:a 乒乓球: a-3
师:请同学们思考:a+3中,a 表示什么?a+3 表示哪一个量?
a-3 中,a 表示什么?a-3 表示哪一个量?
当a=3、8……时,羽毛球分别是几个?
师结合板书,小结:看来,除了用一个字母表示数量外,我们还可以
用什么方法来表示数量 (含有字母的式子)
2、 那咱们试试看,
一箱苹果重10千克,吃了a千克,现在还有多少千克?
一只足球35元,买x 只,应付多少元?
商店运到g台彩电,总价7200元,每台彩电多少元?
周二温度由26C下降tC后是几摄氏度?
3、用含有字母的式子表示数量关系
师:一个字母只能表示数量,而含有字母的式子不但能表示出数量,而且能表示出数量关系。
独立思考:如果我们用A表示乒乓球的个数,用下面的式子分别表示排球、足球、篮球的个数,你能看得出乒乓球个数与这几种球的个数之间有什么关系吗?
课件出示:A-5 6A A÷2
师小结:看来,含有字母的式子既可以表示数量,也可以表示出数量关系,的确作用很大。
三、尝试解题,自主归纳
1、师:我们就用刚刚学的本领,到超市里去逛逛吧!(课件出示超市情景,镜头特写一些物品的单价)
师:每位同学先一样自己最喜欢的食品。
(师下发购物单、生自主进行)
购物单
名 称
单 价
数 量
总 价(列式计算)
2、交流:
师:(可以投影一些同学的购物单)你买了什么?还有谁也买了()?看这些买()的情况,这些量中,什么变?什么没有变?你能买()的总价用一个式子来表示吗?
师:可以用你喜欢的来表示。(……)
师:那么,买()的购物单我们也用不着一张张地看了,谁能用一个算式反咱们全班买()的总价表示出来?表示什么意思?
(生可能会讲同一个字母)
师作补充:一般来讲,在同一个问题里,不同的量要用不同的字母来表示。
这些字母可以是哪些数呢?
一般情况下,我们可以用a、b、c、d……任何一个字母来表示数,但是在一些特殊情况下,某些特定的量常常用特定的字母来表示,如v用来表示速度,t表示时间,s表示路程,而在求面积时,s又用来表示面积。
四、 激发情感,升华新知
1、学到这里,你有什么收获?
2、大家的收获真不小!但如果能很快地解决下面的几个问题的话,陈老师相信大家一定会收获更大!
课件出示练习题:
(一)口答:(1)一辆公共汽车上有46名乘客,在西门站下去A名,
又上来B名,这时,汽车上有( )名乘客。
(2)A的5倍减去4.8的差表示为( )
(3)张师傅每天做A个零件,李师傅每天比张师傅多做8个,
李师傅5天共做()个零件。
(二)师:上星期,我们齐贤镇举行了小学生田径运动会,镇校五年级6个班
组成一支代表队,取得了优异的成绩。这支代表队参加比赛的人数是这样的:(出示课件)
师:从屏幕上你了解到了什么信息?想想看还能用含有字母的式子表示出其他相关的信息吗?可以小组合作完成,看哪组写得快,写得多。
(三)玩一个数青蛙的游戏,好吗?
(课件播放)1只蛤蟆1张嘴,2只眼睛4条腿,1声扑通跳下水;
2只蛤蟆2张嘴,4只眼睛8条腿,2声扑通跳下水;
3只蛤蟆3张嘴,6只眼睛12条腿,3声扑通跳下水;
……
师:你还能继续往下唱吗?能用咱们今天的知识解决它吗?
(n 只青蛙n张嘴,2n只眼睛4n条腿,n声扑通跳下水。
(四)挑战性问题。
师:最后,我们再看一个非常有趣的问题。这个问题,同学们课后解决。
在某地,人们发现蟋蟀叫的次数与温度有如下的近似关系:用蟋蟀1分钟收的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)。
(1)用字母表示该地当时的温度;
(2)当蟋蟀1分钟叫的次数分别是84、105和140时,该地当时的温度约是多少?
教材说明
综合应用“量一量找规律”是在完成了第四单元“简易方程”的教学之后安排的,旨在让学生综合运用所学的测量、统计和方程等方面的知识,通过动手操作揭示事物之间的内在规律,激发学生学习数学的兴趣,在培养学生实践能力的同时培养学生归纳推理的思维能力。
“量一量找规律”活动由以下四部分组成。
1.自制实验工具。
学生在充分理解方程意义的基础上,利用皮筋、木棒、盘子和细绳等材料小组合作制作一个简易秤。具体的做法是用细绳将盘子拴住做成一个托盘,然后用皮筋分别将托盘和木棒拴住。
2.收集实验数据。
学生利用自制的简易秤,依次称量1本、2本、3本等不同数量的课本,在统计表中记录称量的课本数和相应的皮筋总长度,并计算出每增加一本书皮筋伸长的长度。
3.分析数据。
引导学生观察统计表中的信息,并根据表中的数据绘制折线统计图,启发学生讨论从统计图表中能够获得哪些信息。
4.根据统计结果归纳推理。
根据统计图表的结果小组合作探究皮筋长度和课本数二者之间存在的规律及此规律适用的范围。
整个活动不仅使学生经历从收集实验数据、数据、制成统计图表到根据统计结果推理事物之间内在本质关系的全过程,而且促使学生进一步体验运用所学知识探究未知事物的乐趣。
教学建议
1. 这部分内容可用1课时进行教学。
2. 这个活动是一个操作性很强的活动,教学时可采用小组合作的形式放手让学生尝试,充分调动学生自主探索的积极性,教师只在关键处予以一定的引导和点拨。
3.在制作实验工具部分,教师可提前布置学生准备制作材料,并引导学生思考:对制作简易秤使用的橡皮筋和木棒有什么具体要求,启发学生选择弹性较好的橡皮筋,至少在称量6本数学书时不会超出弹性限度或发生永久变形;选择的木棒要尽量做到长度适中、粗细均匀,在称量时不会弯曲、变形。此外,拴盘子时要注意拴的角度和拴绳的长度,使托盘在称量时保持水平、稳定。当然,教师也可根据情况灵活安排,如可用弹簧来代替橡皮筋,在制作时用铁钩等代替木棒达到称量的目的。
4.在收集实验数据部分,教师可在实验之前要求学生先明确书本第77页中统计表中要求采集的信息,并引导学生讨论测量过程中应该注意的事项。例如,要明确测量的起点和终点;测量皮筋长度时要等橡皮筋和秤盘均处于稳定状态时再测;称量时要设法使木棒保持水平……这样得到的数据误差较小。具体实验的实施可采取小组分工合作的形式。
5.在分析数据部分,教师根据统计表绘制出折线统计图,引导学生仔细观察统计图表,想一想统计图表呈现的特点,并讨论它们传达出的信息。然后,对应统计图表,请小组同学互相说一说:“如果要称量7本书,皮筋会伸长多少?8本呢?10本呢?”
6.在根据统计结果归纳推理部分,老师引导学生思考皮筋长度和课本数二者之间存在的规律,向学生初步渗透函数的。如果有的小组实验数据与理论上y=a+bx(a代表皮筋原长,b代表每增加一本书皮筋伸张的长度)的关系存在一定误差,老师可引导学生分析原因,也可向学生客观说明。
7.在学生出二者之间存在的规律后,老师还可进一步启发学生思考“如果要称量的课本越来越多的话,皮筋会发生什么变化”,帮助学生理解上述二者的关系均是建立在皮筋的弹性限度之内的,反之,二者的关系不存在。
教材第70—72页
教学目标:
1、学生联系现实问题中的数量关系,理解和掌握不含括号的三步混合运算的运算顺序,并能正确地进行计算。
2、学生在按顺序进行计算和运用学过的计算解决实际问题的过程中,进一步增强策略意识,感受数学的应用价值,提高解决实际问题的能力。
教学重难点:
掌握不含括号的三步混合运算的运算顺序,并能正确地进行计算。
教学过程:
一、谈话引入
1、谈话:同学们喜欢下棋吗?为了丰富同学们的课余生活,李老师正在体育用品商店为同学们购买中国象棋和围棋呢!我们一起去看看吧!
出示情境图,提问:从图中你知道了什么?这道题要求的'问题是什么?
再问:想一想,要求李老师一共要付多少元,要先算什么?请按自己的想法列式解答,并与同学交流。
指名板演,并组织讲评。
提问:如果列综合算式解答这道题,可以怎么列?
根据学生回答板书:12×3+15×4。
2、揭示课题,并板书课题。
二、展开教学
1、教学例1。
启发:你会算这样的三步混合运算式题吗?请同学们先根据例题中的填空想一想,这道算式可以按怎样的顺序计算?再试着算一算。学生尝试计算,教师巡视,并指名板演。
追问:你觉得按这样的顺序计算正确吗?能联系实际问题中的数量关系来说说为什么可以这样算吗?
比较分别计算出两个积与同时算出两个积的两种情况。提问:谁的计算过程更简略一些?
2、教学“试一试”。
(1)出示“试一试”。
谈话:这里还有一道三步混合运算的算式,你能试一试吗?先算出结果,再和同桌说说,你是按怎样的顺序计算的。
学生尝试计算,教师巡视,指名板演。
(2)反馈,说说这道题的运算顺序。
3、引导归纳。
谈话:今天我们学习的三步混合运算,都是不含括号的算式。请同学们想一想,在没有括号的算式里,如果既有乘、除法,又有加、减法,要按怎样的顺序计算?先在小组里互相说一说。
学生交流。
三、练习
1、完成“练一练”。
2、做练习十一第2题。
(1)出示左边一组题,比较一下,它们有什么相同和不同的地方?
(2)学生练习后,试着解释两道题得数相等的道理。
(3)出示右边一组题,让学生先按顺序计算,再和小组里的同学说说这两道题的相同点和不同点。
组织交流。
3、做练习十一第4题。
出示题目,提问:题目的已知条件有哪些,要求的问题是什么?要求合唱组有多少人,要先求什么?要求书法组和美术组一共有多少人,要先算出哪个组的人数?
学生列综合算式解答,并组织反馈。
四、课堂总结
通过这节课的学习,你有什么收获呢?
教学目标:
1、 使学生能够运用分数表示可能性的大小,自主的设计一些活动方案。
2、 对实际生活中的事件和现象,学生能运用可能性的知识进行合理地解释。
教学重点:
在学生学习分数表示可能性大小的基础上,提出自主设计方案。
教学难点:
让学生自主设计活动的方案
教学过程:
一、课前谈话
教师做自我介绍。(生自由介绍)
你们学校五年级有几个班啊?咱班被选中和老师一起来上课的可能性是多少?(生答)嗯,很难得!
这次讲课活动啊,共有55位数学老师参加,那老师被抽到给你们上课的可能性是多少?(五十五分之一)是啊,在可能性这么小的情况下,老师有�
(板书——设计活动方案)
三、探究新知
设计活动一
(1)刚才只有x位同得到了礼物,可是老师很想把这些礼物都送给大家,那么怎样往盒子里放球,会使你们摸到红球的可能性大一些呢?(生陆续举手)看样子,有的同学已经有了自己的想法,下面就以小组为单位,把你的想法与小伙伴们交流,看你们能设计出什么样的方案?开始吧!
(2)小组活动,师巡视指导。
(3)哪个小组愿意到前面来汇报一下你们的设计方案?
(4)生分组汇报。
设计活动二
(1)为我班学生设计节目表演活动方案。师出示要求,生读题。
(2)学生同位合作填表格,师巡视指导。
(3)学生汇报,师汇总。
(4)观察这些方案,你有什么看法?
设计活动三
(1)为了调动同学们的积极性,凡是参加活动的30名同学都可以得到一份纪念品,根据他们的兴趣爱好,我准备了食品、学习用品和小型玩具三种纪念品,要使同学们得到学习用品的可能性是五分之二,该如何设计呢?你能帮我设计一个活动方案吗?
(2)独立设计活动方案,教师巡视指导。
(3)学生汇报,教师汇总,那对于这些方案,你又有什么发现?
那你能不能根据他们的共同点,对这些方案进行总结一下?
四、巩固应用
现在很多商场超市在节日期间,都想出了很多别出心裁的促销活动。
1、下面是老师的调查情况(出示课件)学生读题。
2、同学们以小组为单位,进行设计。
3、汇报想法,实物投影总结活动情况。
4、看看另外一个商场的促销活动吧!(课件)学生读题
五、总结
通过本节课的学习,你都有哪些收获?你有什么体会?
教学内容
教材第105页例4第106页例5及练习二十三
教学目标
知识与技能
1、通过教学,使学生理解中位数在统计学的意义,学会求中位数的方法。
2、了解中位数与平均数的联系与区别,会根据数据的具体情况合理选择统计量。
过程与方法
经历中位数的认识计算过程,体验合作探讨,理解认识的学习方法,培养学生全面多角度分析问题的意识和初步的统计观念。
情感态度价值观
在学习活动中,感受数学知识在现实生活中广泛应用,激发学习兴趣,增强学生在生活中的数学意识,培养学生热爱体育运动的良好情感,
重点难点
重点
理解中位数的意义,掌握中位数的计算方法。
突破方法:
小组合作探究,在理解的基础上掌握中位数的方法。
难点
掌握求偶数个数据的中位数的方法。
突破方法
通过尝试理解,讨论交流体验来突破
教法与学法
教法创设情境质疑引导引导与讲解相结合
学法小组合作探究自主实践体验
教学准备
投影仪
教学过程
一、创设情境,生成问题
复习准备
1、教师投影出示
王丽同学1分钟跳绳比赛成绩如下表
次数第一次第二次第三次第四次
成绩124108136132
她这四次测试的平均成绩是多少?
看题理解题意,学生独立解答汇报
同学们在前面的学习中我们学习求平均数的方法,并且用平均数代表一组数据的一般水平,但有些时候平均数并不能代表一组数据的一般水平,今天我们就来认识一位新朋友——中位数
体育课上同学们掷沙包的成绩是多少呢?学生汇报,同学们可真棒!咱们去看看五1班同学正在进行掷沙包比赛,他们的成绩如何呢?
二、探索交流,解决问题
1、投影出示教材第105页例4情景图
设计意图(从生活中的实际问题入手,激发学生的学习兴趣,学生兴趣盎然,跃跃欲试)
姓名李明陈东刘云马钢王明张炎赵丽
成绩36.834.725.824.724.624.123.2
从他们的成绩表中你得到了哪些信息?
学生观察,小组交流获得信息,
师:用什么数来表示这组同学的掷沙包的水平呢?
生:学生小组中议一议算一算。
学生汇报交流,可能有小组算出了这组数的平均数
师:根据汇报板书27.7m
如果用27.7m这个成绩代表这组掷沙包的水平你没有异议么/?
生:观察数据特点,小组议一议,说一说。
生:发现两个同学的成绩太高
大多数同学的成绩都低于平均值,和平均数相差太远
用平均数表示这一组数据的一般水平不太合适,
那么用什么样的数表示呢?
学生这是可能有些困难,教师适时引导学生认识中位数
设计意图(创设问题情景,激发学生学习兴趣,通过估计,计算比较,发现用平均数表示一般水平不合适,从而引入新的内容——中位数,符合学生认知规律,进一步激发学生的求知欲望)
2、师:介绍中位数
平均数与一组数据中的每个数据都有直接关系,任意一个数据大小的变化都会对平均数值产生影响,所以我们来寻找新的统计量来弥补平均数在描述某数据组的不足,这个数的名字叫中位数,顾名思义中位数就是把一组数据按大小顺序排列后,位置居中的就是中位数
优点(不受偏大偏小数据的影响
五1班掷沙包成绩的这组数据中的中位数是多少呢?
生:动手尝试,从小到大排列找出中位数24.7
师:小结求中位数的方法
a按大小顺序排列b求中位数
设计意图(让学生认识理解,体验求中位数的过程,掌握求中位数的方法,并理解中位数在统计学中的意义。)
小结:平均数和中位数都是反映一组数据集中趋势的统计表,但当一组数据中某些数据严重偏大或偏小师,最好选用中位数来表示这组数据的一般水平。
3、教学例5
投影出示例5五2班7名男同学的跳远成绩表
姓名李志强陈文王文贤赵军张鹏刘卫华于国庆
成绩3.062.902.743.522.832.892.78
师问:用什么样的数来表示这一组数的一般水平呢/
生:(1)求出平均数2.96
(2)按大小顺序排列,求中位数2.89
2.96比这一组数据中大多数数据都高,用它来表示这组数据的一般水平不合适,应选中位数
(3)同学之间议一议
(4)如果再增加一个同学杨东的成绩2.94m,这组数据中的中位数是多少?
矛盾产生;一共有偶数个数最中间的找不到/
生:小组内讨论,议一议
得出结论;一组数据中有偶数个数的时候,中位数是最中间两个数的和除以2
(2.89+2.90)/2=2.895
设计意图(学生在小这合作中自主探究发现知识规律,并动实践求平均数,中位数,培养学生自主学习的能力,同时使学生进一步理解中位数的意义。)
三、巩固应用,内化提高
教材第107页练习二十三第1题
(1)生读题,小组讨论,共同解答,汇报交流
(2)教材第108页练习二十三第3题
学生讨论自由解答
设计意图(小组合作完成练习,培养学生合作意识和交流水平,能在练习中巩固所学知识)
四、回顾整理,反思提升
通过这节课的学习你学会了什么/?你有拿些收获?
什么叫中位数?和平均数有什么区别/
怎样来求中位数?
板书设计
中位数
例4
23.224.124.624.725.834.736.8
中位数是24.7
一组数据按大小顺序排列后,最中间的数据就是这一组数据的中位数,它不受偏大偏小数据的影响
例5
(3.06+2.90+2.74+3.52+2.83+2.89+2.78)/7
=20.72/7
=2.96
中位数:2.742.782.832.892.902.943.063.52
(2.89+2.90)/2=2.895
课堂设计说明:
1创设情景生产问题,在教学开始,我提出一个生活中的真问题,让学生参与引发他们的理性认识,通过小组讨论交流引起学生对掷沙包的一组数据一般水平的认识冲突,发现单靠平均数来描述数据特征有时不合适,让学生从具体问题中体会数学在生活中的重要性
2在分析讨论中促进学生对概念的理解,通过观察分析讨论,在共享集体思维成果的基础上逐渐构建。
同学们,你们平时都喜欢什么体育运动?(生回答)我们班的同学也非常喜欢体育运动,经常在一起进行体育比赛。前几天有七名同学举行了一场投沙包比赛,让我们去看看吧。(幻灯片:照片)
师:这是他们比赛的成绩统计表,从表上你知道了什么?(统计表上只出示7名同学的成绩的平均数,没有个人成绩。)
生:7个人的成绩平均数是27.7。
师:有一名同学叫刘云,他的成绩是25.8米,你猜猜他可能排在第几?
生猜测比较靠后的位置。
师:你为什么猜他排在后面呢?
生:因为他的成绩比平均数小,所以成绩在后面。
师:我们看看是这样吗?(出示七名同学的成绩,刘云排在第三)
师:为什么刘云的成绩比平均数低,还能排在第三呢?
生观察统计表后回答。(预设)
生:因为这组数据中有两个数特别大,平均数就跟着大了。所以刘云的成绩比平均数低还能排在第三。
师:这组数据中,只有两个数比平均数大,有五个数都比平均数小,用平均数表示他们的投沙包水平合适吗?(生:不合适)想想办法。从这组数据中挑出一个数代表他们的投沙包水平,自己找一找,和同桌说一说。
生:我找到的数是24.7。
师:为什么找这个数?
生1:因为7个数中有3个数比它大,有三个数比它小。
生2:它处在这组数据最中间的位置。
师:这个数在这组数据中这么重要,我们给它起个名字吧。
师:数学家给这种数命名中位数,这就是这节课我们学习的新知识。(板书)
这组数据的中位数是多少?在习题纸上圈出来,再想一想你是怎样找出来的。
生:中位数是2.78,我先看他是不是按顺序排列的,再找到中间的数。
用什么样的数来表示这一组数的一般水平呢/
在一组数据中,中位数平均数只有一个,怎么办呢?
生寻找办法。
师:你的办法真棒,按照你说的方法,求一求吧。
生在习题纸上计算,一人板演。
师:谁能说一说,怎样求偶数个数列的中位数?
生:按顺序排列后,找到中间两个数,再求出他们的平均数。
师:(板书)好,请你看着黑板,和你的同桌说一说如何找一组数据的中位数。
生练习后汇报。
教后反思:
教材中通过结合生活实际来比较平均数,从而产生中位数的教学的必要性。本人循着教材的思路和自身的理解设计了“平均数有时不能正确反映中等水平,有时能——发现概括平均数时候不能正确反映中等水平——该用什么数表示,学习中位数——中位数与平均数的关系,——在练习中分散难点,进一步理解为什么有时候平均数不能正确反映中等水平,而中位数则可以,深入理解中位数的稳定性。