数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。这次为您整理了四年级数学下册教案(优秀4篇),如果对您有一些参考与帮助,请分享给最好的朋友。
教学目标
1、知识与技能:用运算定律进行一些简便运算。
2、过程与方法:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3、情感态度与价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重、难点:能运用运算定律进行一些简便运算。
教学环节
问题情境与教师活动学生活动媒体应用设计意图
目标达成
导入新课
一、目标导学
1、上节课我们学习了加法的两个运算定律,你能说出是哪两个吗?你能举出例子说说吗?
2、导入新课(师板书课题)
3、出示学习目标。
二、自主学习(根据自学提纲自学课本20页例3。)
(一)自学提纲
1、例3中都给出了哪些已知条件?求的问题是什么?
2、你能列出算式吗?
3、你能很快算出此题的答案吗?你是怎样计算的?与同桌交流。
4、在此题中,你运用了加法的哪些运算定律?
(二)学生自学(教师巡回指导,并告诉学生在看不懂的地方要做上标记)。
(三)自学检测
计算下面各题,怎样简便就怎样计算
425+14+18675+168+25
环节
三、合作探究
1、小组互探(把在自学过程中遇到的不会问题在小组内交流探究)。
2、师生互探(师生共同探究在自学过程中遇到的不会问题及经小组讨论后还未能解决的问题)
3、在运用加法运算定律进行计算时应注意什么?
四、达标训练
1、根据运算定律在下面的()里填上适当的数。
46+()=75+()()+38=()+5924+19=()+()
a+57=()+()要求学生说出根据什么运算定律填数。
2下面各式那些符合加法交换律。
140+250=260+13020+70+30=70+30+20260+450=460+250a+400=400+a
3、P20做一做1、2
教学目标:
1、通过估计、实验、推算、交流等活动,让学生在具体的情境中体验一亿的大小,培养学生数感,并让学生感受数学与生活的密切联系;
2、初步获得解决问题的一些策略和方法,提高学生解决问题的能力;
3、让学生获得成功的体验,并受到勤俭节约、保护环境的思想教育。
教学重点:
让学生从不同的角度感受到一亿的大小,并能结合实际,以具体的事物来表达对一亿大小的感受。
教学难点:
培养学生解决问题的策略和方法,提高学生解决问题的能力。教具准备:学生准备:计算器、作业纸、数学书;
教师准备:
大米(100粒5份)、1千克大米一份、天平、卷尺、第三张表格图及下面的算式、课件。
教学过程:
一、创设问题情境,激发学习兴趣
二、引导学生经历估计——验证的过程,借助时间体验一亿有多大。
师:这是作业本,老师数一数1、2、3、4、5、6、7、8……照这样的速度数一亿本作业本,你估计要多长时间?(学生估计3小时、5小时、24小时……,师板书)
师:同学们估计得怎么样呢?我们可以通过实验来验证。
议一议:怎样能够得到数一亿本作业本的时间呢?
小组讨论。(数100本、50本、20本……作业本的时间,再推算数一亿本作业本的时间)
实验:每组推选一名代表数本子,数50本,老师记时。
数50本作业本大概是40~50秒,学生得出数100本作业本大概需要80秒~100秒的时间,从中取一个中间值大概90秒。
师:下面咱们就一起来推算一下数一亿本作业本所需要的时间。
(课件出示下表)本数时间(秒)90师生共同讨论,完成上表。
师:通过推算我们知道了数一亿本作业本的时间是90000000秒,这段时间长不长?这么长的时间用秒作单位来表示,显然不合适,你认为应该采用哪个时间单位?(年)怎样把9千万秒换算成多少年呢?(先把秒换算成分,再换算成时,最后换算成年)出示书上的算式: ( )÷60=( )分 ( )÷60=( )时 ( )÷24≈( )天 ( )÷365≈( )年(学计算,并保留整数。)
师:看了这个结果你有什么想法?(学生交流)
小结:
数一亿本作业本,有的同学估计要……,而实际结果却将近要3年的时间。在这三年里,我们有没有去掉吃饭时间,有没有去掉睡觉时间,也就是说不吃不喝不睡不停的数下去要3年哪,同学们,看了这个漫长的时间,你有什么感受?(一亿实在是太大了、数一亿本作业本的时间太长了……)
三、再次经历估计
验证的过程,借助长度体验一亿的大小。
师:课间老师经常发现同学们喜欢手拉手一起玩,大家有没有想过如果一亿个小朋友手拉手站成一行,会有多长呢?(给学生一定的思考时间,不必回答)
师:凭空想象有一定的难度,同学们你们都去过头道羊岔吧,从学校到头道羊岔的公路长不长,老师告诉你,这条公路全长大概是1千米。想一想,一亿个小朋友手拉手的长度有没有从学校到头道羊岔的公路那么长呢?估计一下,大概有多少个这样的长度?(学生估计2个、4个、3000个……师板书)
小组讨论:怎样能得到一亿个小朋友手拉手的长度呢?(测量5个、10个、100个……小朋友手拉手的长度,推算出一亿个小朋友手拉手的长度。)
师:下面我们就一起来做一个实验,测量10个小朋友手拉手的长度,各组组长上来,每三个人一组负责测量,注意方法正确。
其他同学在走廊上手拉手站成一行,站得要又快又安静。
(实验收集数据。实验时注意,从第一个同学的手指尖量到第10个同学的手指尖,并推算出十个小朋友手拉手的长度,大概12米。)
师:刚才我们测量出10个小朋友手拉手的长度大概是12米,下面我们就可以进行推算了。
(出示表格,师生一起推算)
人数10100100010000100000……100000000长度(米)12120再算一算,这个长度有几个从学校到头道羊岔的公路长?
出示算式,学生用计算器进行计算:120000000÷1000=120000 (个)回过头来比较学生估计的数据与实际数据,再次感受一亿的大小。
四、总结方法,指导学法。
师:同学们,刚才我们通过什么方法知道了一亿是一个很大的数?(通过数一数、量一量的方法,先估计再推算,最后比较,了解了一亿有多大。)
师:你们会用这样的方法再次体验一亿的大小吗?五、拓展研究大数的方法,放手让学生借助重量体验一亿的大小。
师:观察一下你们的桌面,看一看我们还可以借助什么的研究来了解、感受一亿的大小?(用天平称100粒大米的重量,推算一亿粒大米的重量)学生说说怎样用上面学到的方法进行实验。
分组实验:
学生用天平称100粒大米的重量,得出大概是2.5克。小组合作推算出一亿粒大米的重量,并用千克作单位,与刚才的估计进行比较,进一。
教学目标:
1、结合具体情境,理解整数加法运算定律水小数同样适用,并会应用加法运算定律和减法的运算性质比较熟练地进行小数加、减法的简便计算。
2、在解决问题的过程中,体会数学与现实生活的密切联系。
教学重点:能应用加法运算定律和减法的运算性质进行小数加、减法的简便计算。
教学难点:在解决问题的过程中,体会数学与现实生活的密切联系。
教具学具:多媒体课件
教学过程
一、情境导入
师:同学们,以前我们学习了哪些加法运算定律?生:加法交换律和加法结合律。
师:你能用字母把它们表示出来吗?(学生说,教师板书)生:加法交换律a+b=b+a;加法结合律a+b+c=a=(b+c)。师:我们学这些运算定律的目的是什么?
生:学这些运算定律是为了帮助我们进行简便计算。
师:下面的每组算式两边的结果相等吗?计算后,你发现了什么?
3.2+0.5○0.5+3.2(4.7+2.6)+7.4○4.7+(2.6+.4)生:相等,两个小数相加,交换加数的位置,和不变。三个小数相加,先把前两个小数相加,再加第三个数,或者先把后两个数相加,再加第一个数,结果不变。
师:整数加法的运算定律在小数加法的运算定律页同样适用。应用这些运算定律,可以使一些小数计算简便些、我们今天就学习整数加法运算定律推广到小数。(板书)
二、自主探究
出示例4.计算0.6+7.91+3.4+0.09
师:上面的算式属于什么算式?我们应该怎样计算呢?
生:上面是连加算式。按照运算顺序,从左往右计算,计算出的小数如果末尾有0要去掉。
师:自己试着计算一下。(学生独立完成,板演)0.6+7.91+3.4+0.09=8.51+3.4+0.09=11.91+0.09=12
师:观察上面的算式,想到其他的计算方法吗?生:整体观察算式发现,如果交换7.91和3.4的位置,这样0.6与3.4、7.91与0.09都可以凑整计算,也就是说在运用加法交换律后,再继续使用加法结合律就可以使计算更简便些。
师:你会解答吗?
(学生独立完成,板演展示)0.6+7.91+3.4+0.09
=(0.6+3.4)+7.91+0.09)=4+8
三、探究结果汇报
师:通过上面的学习,把整数加法运算定律推广到小数,你有哪些收获?
生1:加法交换律和加法结合律在小数加法中同样适用,运用这些运算定律,可以使得计算简便些。
生2:计算小数加、减法,可以按照从左往右的顺序计算,也可以根据算式的特征,灵活选择运算定律进行简便计算。
四、师生总结收获
师:通过本课时学习,你有哪些收获?
生:整数加、减法中的运算定律对小数加、减法同样适用,在计算时,我们要先观察算式中的数据,根据数据的特点选择合适的简便算法。
教学目标:
1.使学生掌握求一个小数的近似数的方法。
2.能正确地用“四舍五人法”求近似数。
3.使学生理解保留小数位数越多,精确程度越高。
教学重点:
使学生理解取近似值对结果的精确程度的影响。
教学难点:
理解保留小数位数越多,精确程度越高。
教学方法:
探究交流法
教学准备:
多媒体课件
课时课型:
1课时
教学过程:
(一)创设情境
1.出示情境图,电子秤上显示的数据和售货员的话,提出疑问怎么会不一样?引出“四舍五入法”
2.引出近似数,复习整数求近似数。
(二)探究交流
1.出示情境图,在实际应用小数时,往往也没有必要说出它的准确数,只要它的。近似数就可以了。提出0.984的近似数是多少?小组讨论后指名汇报。
(根据学生汇报现场操作展示在多媒体PPT中,插入函数能在播放时在方框里输入学生汇报结果,能及时将学生的想法展现在课件上)
2根据汇报结果,分别具体探讨保留两位小数的近似数,保留一位小数,保留整数后的近似数。并说一说操作的过程。
3、强调取近似数的要求不同表示方法
4、小组探讨1与1.0的精确度
5、引导通过线段图理解保留一位小数是1.0,小数末尾的0,应当保留,不能去掉。
6、总结:刚才是利用什么方法求0.984的近似数?独立完成想一想后在小组中交流,找不同说原因。
(三)巩固练习
1、选择,学生独立完成,指名汇报
(1)保留()位小数,表示精确到十分位。
①一位②两位③三位
(2)如果要求保留三位小数,表示精确到()位。
①分②百分③千分
2、求下面小数的近似数
(1)保留两位小数
0.25612.0061.0987
(2)精确到十分位
3.720.589.0548
(选两组,整组4人一起在电脑前讨论后,将本组答案用电脑操作展现在课件上放映呈现给大家)
3、按要求填出表中的近似数
4、拓展题
(四)全课总结
1、数学课将结束了,你有哪些收获?在哪方面还需努力?
2、今天我们学习的是课本73页的知识,打开课本,认真看一看课本,找出书中你认为需要掌握的知识用笔做个记号,然后大声地朗读出来。
课后作业:
1.从课后习题中选取;
2.完成练习册本课时的习题
板书设计:
求一个小数的近似数
0.984≈0.980.984≈1.00.984≈1
小于5,舍去大于5,向前一位进1大于5,向前一位进1
表示近似数的时,0不能去掉