作为一名辛苦耕耘的教育工作者,常常需要准备说课稿,说课稿有助于提高教师的语言表达能力。那么大家知道正规的说课稿是怎么写的吗?这次漂亮的小编为您带来了初中数学说课稿一等奖优秀9篇,如果对您有一些参考与帮助,请分享给最好的朋友。
各位评委:
大家好!今天我说课的题目是 ____,所选用的教材为浙教版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。(或加教学评价)
一、教材分析
1、教材的地位和作用
本节教材是初中数学____ 年级第____章第____节的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。
2、学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:______________难点确定为:____________________
二、教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1、 知识与技能目标:初步掌握____,能够运用所学的知识解决一些简单的问题。
2、 过程与方法目标:经历探索____的过程,培养学生观察分析、类比归纳的探究能力,加深对函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论等数学思想的认识。
3、情感态度与价值目标:通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
三、教学方法分析
本节课我将采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的"最近发展区"设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 复习就旧,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2) 创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3) 发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。
(4) 分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。
(5) 强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6) 小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识;
② 通过本节课的学习,你最大的体验是什么;
③ 通过本节课的学习,你掌握了哪些学习数学的方法?
(7) 布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
一、设计思想:
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高
二、背景分析:
(一)学情分析:内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。
本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。
(二)内容分析:本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进
行的,为后面学习可化为一元二次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透类比转化思想。
(三)教学方式:自学导读—同伴互助—精讲精练
(四)教学媒体:Midea---Class纯软多媒体教学网几何画板
三、教学目标:
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。
各位专家、各位老师:
大家好!
今天我说课的内容是人教版七年级数学下册第六章《因式分解》第一节课的内容·
一、说教材
(一)教材的地位与作用
因式分解是代数式的一种重要恒等变形·它是学习分式的基础,又在恒等变形、代数式的运算、解方程、函数中有广泛的应用,就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系·它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理·这一思想实质贯穿后继学习的各种因式分解方法·通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备·因此,它起到了承上启下的作用·
(二)教学目标
根据新课程标准以及因式分解这一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:
1·知识目标:
理解因式分解的概念;掌握从整式乘法得出因式分解的方法·
2·能力目标:
培养分工协作及合作能力,锻炼学生的语言表达及用数学语言的能力;培养学生观察、分析、归纳的能力,并向学生渗透对比、类比的数学思想方法·
3·情感目标:
培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯;体会事物之间互相转化的辨证思想,从而初步接受对立统一观点·
(三)教学重点与难点·
本节课理解因式分解的概念的本质属性是学习整章因式分解的关键,而学生由乘法到因式分解的变形是一个逆向思维·在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成·因此我将本课的学习重点、难点确定为:
教学的重点:因式分解的概念
教学的难点:认识因式分解与整式乘法的关系,并能意识到可以运用整式乘法的一系列法则来解决因式分解的各种问题·
二、说学情
1·学生已经学习整式的乘法、乘法公式以及整式的除法的学习·
2·八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习·
三、说教法学法
教发与学法是互相和统一的,正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流 ”·就本节课而言,在教法上不妨利用对比教学,让学生体验因式分解概念产生的过程;利用类比教法、讲练结合的教学方法,以概念的形成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈·不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感、创造和谐的课堂氛围,这是最重要的·
四、教学过程·
本节课教学过程分以下六个环节:
创设情景,引出新知; 观察分析,探究新知;
师生互动,运用新知; 强化训练,掌握新知;
整理知识,形成结构; 布置作业,巩固提高·
具体过程设计如下:
第一环节:创设情景,引出新知
我先出示几个整式乘法的练习,让学生做·教师巡视·
学生完成习,一是复习整式的乘法,激活学生原有整式乘法的认知结构,满足“温故而知新”的后,教师引导:把上述等式逆过来看一看还成立吗?
安排这样的练教学原理·二是为本节课目标的达成作好铺垫·在此基础上引出课题——因式分解·
第二环节:观察分析,探究新知
全班两个组,比赛看哪一组算的快,当a=101,b=99时,第一组求a2—b2的值,第二组求(a+b)(a—b)·教师巡视,代表性地抽取两名学生板演,给出两种解法·
安排这一过程是想利用对比分析,让学生体会,把a2—b2化为整式积的形式,会给计算带来简便,顺应了因式分解概念的引出·
问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮,是学生知识及能力获得发展的有效动力·故在教因式分解概念时,我设计以下两个问题:
(1) 你能尝试把a2—b2化成几个整式的积的形式吗?并与小学所学的因数分解作比较·
(2) 因式分解与整式乘法有什么关系?
让学生分四人小组讨论·归纳因式分解的定义·
一个多项式→几个整式+积→因式分解
我特设三个例题,这几个题目完全放手让学生自主进行,充分暴露学生的思维过程,使学生真正成为学习的主体·通过例1、例2罗列一些似是而非、容易产生错误的对象让学生辨析,让学生进一步体会整式乘法与因式分解的互逆关系·促使他们认识概念的本质、确定概念的外延,从而形成良好的认知结构·通过例3体会用分解因式解决相关问题的简捷性·
第三环节:强化训练,掌握新知
数学家华罗庚先生说过:“学数学而不练,犹如入宝山而空返”·适当的巩固性,应用性练习是学习新知识,掌握新知识所必不可少的·为了促进学生对新知识的理解和掌握,我及时安排学生完成两个练习·通过这两个练习让学生学会辨析因式分解这种变形·使学生进一步理解和掌握因式分解,为下一节提取公因式法进行因式分解打基础;同时又训练、培养和发展学生的基本技能和能力·
第四环节:整理知识,形成结构·
最后我设计了一个表格的形式进行归纳小结·使学生对知识的掌握上升为一种能力,并纳入已有的认知结构,同时也培养了学生的概括提炼能力·
第五环节:布置作业,巩固提高·
在作业上我布置了看书、作业本、思考题·这样既有利于学生巩固所学内容,又让不同层次的学生得到相应的发展·
五、说板书
在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆·
一、 说教材作用:
本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。
二、说教学目标
1、让学生理解分式方程的意义。
2、掌握可化为一元一次方程的分式方程的一般解法。
3、了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法。
4、在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧。
5、通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的'转化思想。
三、说重难点
本节重点是可化为一元一次方程的分式方程求解中的转化。解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于七年级学生理解有一定的困难,亦可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。
四、说教学方法:
本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。而再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重"精讲多练",真正体现以学生为主体。上知识点复习课时采用了启发、引导式的同时,而针对学生的回答所出现的一些问题给出及时的纠正,在做练习时,这除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。
五、说教学过程
(一)复习
(1) 复习什么叫分式方程?
设计意图:主要让学生区分整式方程与分式方程的区别,能够使学生能积极投入到下面环节的学习。
(2)解分式方程
①学生回忆解分式方程的基本思路和解分式方程的一般步骤,讲解例题:
解:原方程可化为:
方程两边同乘 ,约去分母,得
(x+3)-8x=x2-9-x(x+3)
解这个整式方程,得
检验:把x=3代入最简公分母 (x+3)(x-3)=0
∴x=3是原方程的增根
∴原方程无解
设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。
②学习例题交流讨论,找两组同学到黑板上尝试解题。
设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法进一步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的问题要做出适当的评价,给同学以鼓励和引导。
③我还设计了几个小题让同学们思考分式方程解的情况
设计意图:让学生理解在知道分式方程的根的情况下求式中字母的值
教师小结:
在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根
(二)大显身手
设计意图:巩固
六、课内小结
1、这节课我们学习了什么?
2、提一个问题
各位评委、各位老师、大家上午好!
今天我说课的内容是人教版八年级下册第五章第4节《数据的波动》(第一课时)。现在我就教材、教法、学法、教学流序、板书五个方面进行说明。还恳请在座的各位专家、同仁批评、指正。
一、说教材:
1、本节课的重要内容:探究数据的分离程度及了解“极差”“方差”“尺度差”三个量度及其现实意义。重要是运用详细的生存情境,让门生感觉到当两组数据的 “均匀程度”相近时,而现实题目中详细意义却千差万别,因而必须研究数据的颠簸状态,阐发数据的差别,渐渐抽象出描画数据分离程度的“极差”“方差”“尺度差”的三个量度,并掌握使用盘算器求方差和尺度差。
2、职位地方作用:纵观本章的课本摆设体系,以数据“网络—表现—处置处罚—评判”的次序睁开。数据的颠簸是对一组数据变革的趋向举行评判,通过效果评判形成决议筹划的讲授,是数据处明白决现真相景题目必不行少的重要关键,是本章学习的终纵目标和落脚点。通过本节的学习为处置处罚种种较为庞大的现真相境的数据题目打下底子。
3、教学目标:依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:(1)知识目标:a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。b、会动手和利用计算器计算“方差”“标准差”。
(2)过程与方法目标:a.经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。b.通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)c.突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。d.在具体实例中体会样本估计总体的思想。
(3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。
4、重点与难点:重点:理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。
难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。
二、说教法:
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法:
1、引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。
2、比较法。在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。
3、练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。
4、选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。
三、说学法:
教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是:
(1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。(2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。(3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。(4)引导自学法:学生自学掌握计数器计算方差和标准差的操作功能。
四、说教学程序:
1、创设情境,导入新课:、展示情景(链接奥运会中韩运动员设计的情景)。、学生观察阅读分析(描述运动员射箭的平均水平)。、分析思考寻求解决方案(观察表格数据求平均数)。、通过对以上问题的分析发现在实际生活中除了关注数据的“平均水平”以外,还要关注数据的离散程度。(引出课题——数据的波动)
2、新课: (由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣)
、概念介绍: a、数据的离散程度(是相对于平均水平的偏离情况);b、极差(极差是刻画数据的离散程度的一个统计量,是一组数据中最大数据与最小数据的差);c、练习巩固计算极差;
、引进概念:a、概念“方差”(各个数据与平均数之差的平方的平均数),给出计算公式: S2= 1/n [(x1-x)2+ (x2-x)2 +…+ (xn-x)2 ]b、给出“标准差”的概念(方差的算术平方根)。c、学生相互交流学习操作计算器计算方差和标准差。
、计算引例中的方差和标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。
、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)
4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。
5、布置作业:P—199(1)(2)(3-选作题):
五。说板书设计
板书计划为表款式,如许的板书函明显白,重点突出,加深学生对重点知识的明白和掌握,同时便于比力和影象,有利于进步讲授结果。
一、教材分析(说教材):
1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。
2、教学目标:
1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。
2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。
3、使学生经历探究矩形判定的过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
4、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用
下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。
2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。
三、教学过程环节一:
创设情境、导入新课
通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)
回顾:
1、矩形的定义:有一个角是直角的平行四边形叫矩形
2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。
3、平行四边形的性质:
平行四边形的性质
平行四边形判定
平行四边形两组对边分别相等
平行四边形两组对边分别平行
两组对边分别平行(或相等)的四边形是平行四边形
平行四边形一组对边平行且相等
平行四边形对角线互相平分
一组对边平行且相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
平行四边形两组对角分别相等
两组对角分别相等的四边形是平行四边形
环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由。(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。
活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。
定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)
环节三:应用辨析,巩固定理
总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。
矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:
一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。
二、填空题:
1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。
2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:
判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。
环节四:开放训练,发散思维
变式训练
如图,△ABC中,点O是AC边上的一个动点,
过点O作直线MN∥BC,设MN交∠BCA的
平分线于点E,交∠BCA的外角平分线于点F。
(1)求证:EO=EF
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。
环节五:反思小结,体验收获。今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
环节六:布置作业,反馈回授通过作业反馈对所学知识的掌握效果,并进一步巩固定理,应用定理。
以上是我对本节课的理解,不足之处,请各位评委、老师指正。谢谢大家!
例1 下列等式的右边是怎样从左边得到的?
(1);
由学生口述分析,并反问:为什么?
解:∵
∴.
(2);
学生口答,教师设疑:为什么题目未给的条件?(引导学生学会分析题目中的隐含条件.)
解:∵
∴.
(3)
学生口答.
解:∵,
∴.
例2 填空:
(1);
(2);
(3);
(4).
把学生分为四人一组开展竞赛,看哪个组做得又快又准确,并能小结出填空的依据.
例3 不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.
(1);
分析学生讨论:①怎样才能不改变公式的值?②怎样把分子分母中各项系数都化为整数?
解:.
(2).
解:.
例4 判断取何值时,等式成立?
学生分组讨论后得出结果:
∴.
(二)随堂练习
1.当为何值时,与的值相等
A.B.C.D.
2.若分式有意义,则,满足条件为( )
A.B.C.D.以上答案都不对
3.下列各式不正确的是( )
A.B.
C.D.
4.若把分式的和都扩大两倍,则分式的值
A.扩大两倍 B.不变
C.缩小两倍 D.缩小四倍
(三)总结、扩展
各位评委:
大家好!我是 号说课者,今天我说课的题目是 ,所选用的教材为北师大版义务教育课程标准实验教科书。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,学情分析,教学目标分析,教法和学法分析,教学过程分析,板书设计六个方面展开说课。
一、教材的地位和作用
本节教材是初中数学 年级第 章第 节的内容,是初中数学的重要内容之一。一方面,这是在学习了 的基础上,对 的进一步深入和拓展;另一方面,又为学习 等知识奠定了基础,是进一步研究 的工具性内容。鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
二、学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了 ,对 已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
三、 教学目标分析
新课标指出,教学目标应包括知识与技能目标,过程与方法目标,情感态度与价值观目标这三个方面,而这三维目标又是紧密联系的一个统一整体,学生在学会知识与技能的过程中,同时也是成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。所以,我将三维目标进行整合,确定本节课的教学目标为:
1、 (了解、理解、熟记、初步掌握、会运用 等);
2、 通过 的学习,培养学生 观察分析、类比归纳的探究 能力,加深对 函数与方程、数形结合、从特殊到一般、类比与转化、分类讨论 等数学思想的认识。
3、 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。
根据以上对教材的地位和作用,以及学情和教学目标的分析,结合新课标对本节课的要求,我将本节课的重点确定为: 难点确定为:
为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从教法和学法上谈谈。
四、 教法和学法分析
1、 教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我采用直观演示法(利用图片等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握)、活动探究法(引导学生通过创设情境等活动形式获取知识,以学生为主体,使学生的独立探索精神得到充分发挥,培养学生的自学能力、思维能力、活动组织能力)、集体讨论法(针对学生提出的问题,组织学生进行集体或分组讨论,促使学生在学习中解决问题,培养学生的团结协作精神),以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,
在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
由于本节课内容与社会现实生活的关系比较密切,学生已经具有直观的感受。在教学中可以让学生自己阅读课本并列举社会上存在的一些相关现象,在老师的指导下进行讨论,然后进行归纳总结,得出正确的结论。这样有利于调动学生的积极性,发挥学生的主体作用,让学生对本节课知识的认识更清晰、更深刻。
2、 学法
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”。因而,我在教学过程中特别重视学法的知道,让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为学习的真正主人。这节课我在指导学生的学习方法和培养学生的学习能力方面主要采用以下方法:分析归纳法、自主探究法、总结反思法。
下面我具体来谈谈这堂课的教学过程。
五、教学过程分析
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1) 复习旧知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发, 是本节课深入研究 的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2) 创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望‘
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3) 发现问题,探求新知
设计意图:现代数学教学论指出, 的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳 。
(4) 分析思考,加深理解
设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 环节。
(5) 强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1??例2??,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6) 小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的知识、方法、体验三个个方面进行归纳,我设计了这么三个问题:
① 通过本节课的学习,你学会了哪些知识;
② 通过本节课的学习,你最大的体验是什么;
③ 通过本节课的学习,你掌握了哪()些学习数学的方法?
(7) 布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,
选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效率达到最佳状态。
六、 板书设计
我比较注重直观、系统的板书设计,这有利于及时地体现教材中的知识点,便于学生理解掌握。 我的板书设计分为三部分:第一部分,复习旧知,引入新课;第二部分,定义,法则和定理的说明;第三部分,通过例题巩固应用。
七、结束语
各位领导、老师们,本节课我根据 年级学生的心理特征及其认知规律,采用直观教学和活动探究的教学方法,以“教师为主导,学生为主体”完成教学。教师的“导”立足于学生的“学”,在教学中要以学法为重心,放手让学生自主探索地学习,使他们主动地参与到知识形成的整个思维过程中,在积极、愉快的课堂气氛中提高自己的认知水平,并最终达到预期的教学效果。
我的说课完毕,谢谢!
一、说教材
用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。
二、说学情
任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。
三、说教学目标
【知识与技能】
掌握应用因式分解的方法,会正确求一元二次方程的解。
【过程与方法】
通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。
【情感态度与价值观】
通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。
四、说教学重难点
【重点】
运用因式分解法求解一元二次方程。
【难点】
发现与理解分解因式的。方法。
五、说教法、学法
本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比---探究-----归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。
同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。
六、说教学过程
(一)导入新课
因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲 望,顺利地进入新课。
(二)探索新知
问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?
学生小组讨论,探究后,展示三种做法。
问题:小颖用的什么法?——公式法
小明的解法对吗?为什么?——违背了等式的性质,x可能是零。
小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。
问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]
师引导学生得出结论:
如果a·b=0,那么a=0或b=0
(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)
“或”有下列三层含义
①a=0且b≠0
②a≠0且b=0
③a=0且b=0
问题3:
(1)什么样的一元二次方程可以用因式分解法来解?
(2)用因式分解法解一元二次方程,其关键是什么?
(3)用因式分解法解一元二次方程的理论依据是什么?
(4)用因式分解法解一元二方程,必须要先化成一般形式吗?
因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。
这是我会提示学生:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”
(三)巩固提高
在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下:
用分解因式法解下列方程吗?
在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。
(四)小结作业
最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。