圆的面积说课稿(14篇)

作为一名老师,就不得不需要编写教案,借助教案可以更好地组织教学活动。那么问题来了,教案应该怎么写?

圆的面积教案 1

教学目标

1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3、渗透转化的数学思想和极限思想。

教学重、难点:圆面积公式的推导与运用。

学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片

教学过程

一、设疑导入,激发动机

1、请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。

2、引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)

3、引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。

二、动手操作,探索新知

1、猜想、引导,确定方法

师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?

(学生可能会想到长方形、平行四边形、三角形、梯形等。)

师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?

(根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)

2、动手操作,尝试探究

师请同学们动手剪拼一下,看到底能拼成什么图形。

(学生动手操作,小组合作探究)

师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)

3、课件演示,突破难点

师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:

(1)圆与有近似的长方形有什么关系?

(2)把圆16等份和32等份后,拼成的图形有什么区别?

(3)如果等分份数仅需增加,结果会怎样?

师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。

4、观察比较,导出公式

师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?

学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径,也就是S=πr×r=πr2

(可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)

5、尝试运用

出示例3,读题列式,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

2、完成第116页做一做的第1题。

3、看书质疑。

三、运用新知,解决问题

1、求下面各圆的面积,只列式不计算。

直径50分米

2、一块圆形铁板的半径是3分米,它的面积是多少平方分米?

3、小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?

四、全课小结

这节课你自己运用了什么方法,学到了哪些知识?

五、课堂作业

第118页的第3题和第4题。

小学数学圆的面积教案 2

教学目标

1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

教学重点

圆面积的计算公式推导和运用。

课前准备

一个大圆、剪刀、小正方形。

课时安排:

1课时

授课时间

xx

教学过程

一、复习引入,导入新课。

教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。

学生说出自己的见解。

教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎样表示?

学生做出回答。

教师引导交流:圆的周长和直径、半径有关。大家猜想一下,圆的面积与谁有关?

二、探索尝试,解释交流。

教师引导交流:同学们的猜想对不对呢?下面我们就一起来验证一下。

大家可利用昨晚把圆剪开后,拼成的图形展示一下,看看发现了什么?

全班汇报交流:谁想先来展示一下?(学生回答)

教师引导交流:你能让平行四边形的底再直一点吗?

学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。

学生领悟:多分几份,平行四边形的底就会直一些。

教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?

教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的份数越来越多呢?

教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。

教师引导交流:若把其中的一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?

师:这样就把求圆转化成了求长方形。

教师引导交流:�

教师引导交流:你能根据它们的关系,推出圆的面积公式吗?

长方形的面积=长×宽

圆的面积=c÷2×r=πr×r=πr2

教师引导交流:如果用s表示圆的面积,那么圆的面积公式可以写成:s=πr2

教师引导交流:黑板上的这个圆半径是10厘米,它的面积是多少。

三、巩固练习

1、请同学们利用公式,求出“神舟五号”飞船预先设定的降落范围是多大。

建议:可以先画模拟图,然后想办法得出比预定范围小了多少平方米。

2、自主练习第1题。

3、 自主练习第2题。

给出圆的直径求圆的面积,必须先求出圆的半径,再求圆的面积。

4、 自主练习第3题。

总结:通过这节课的学习,你有什么收获?

六年级数学圆的面积教案 3

教学要求

1、使学生理解圆的面积公式的推导过程,掌握求圆的面积的方法并能正确计算。

2、培养学生运用转化的思想解决问题的能力。

重点难点

重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。

难点:理解圆的面积公式的推导过程。

教具学具

实物投影,各种图形的纸片。

教学过程

一、导入

1、我们学过哪些平面图形的面积公式?

2、长方形、平行四边形和三角形的面积公式分别是什么?

3、平行四边形的面积公式是如何推导的?小结:平行四边形面积公式的推导,提供给我们一种研究平面图形的面积的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。今天,我们还要用转化的思想研究圆的面积。

二、教学实施

1、明确圆的'面积的概念。

(1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?

学生回答,老师归纳:圆所围成的平面的大小叫做圆的面积。

(2)圆的大小是由什么决定的?

(3)展示由“曲”变“直”的渐变图。

引导学生逐层观察圆周曲线的变化情况,把圆等分的份数越多,圆周曲线就越来越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。

2、学生动手操作,推导圆的面积公式。

为了研究方便,我们把圆等分成16份,圆周部分近似看作线段,其中的一份是个近似的三角形,

(1)指导学生动手摆学具,并思考几个问题:

你摆的是什么图形?

你摆的图形的面积与圆的面积有什么关系?

所摆图形的各部分相当于圆的什么?

你如何推导出圆的面积?

(2)学生动手摆学具,然后发言。

拼成长方形:

老师说明:如果分的份数越多,每一份就会越小,拼成的图形就会越接近长方形。

出示教材第67页上面的图加以说明。

拼成的近似长方形的长和宽与圆的各部分有什么关系?

从图中可以看出圆的半径是r,长方形的长是πr,宽是r。

长方形的面积=长×宽

↓ ↓↓

圆的面积=πr×r=πr2

如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。

3.利用公式计算圆的面积。

出示例1:圆形草坪的直径是20m,每平方米草皮8元。铺满草坪需要多少钱?

指名读题,让学生试做,提醒学生不用写公式,直接列算式就可以。

板书:20÷2=10(m)

3.14×102

=3.14×100

=314(m)

314×8=2512(元)

答:铺满草坪需要2512元。

老师强调指出:列出算式后,要先算平方,再与π相乘。

三课堂作业新设计

1.直接写出得数。

22= 32= 42= 52= 62= 72=

82= 92= 102= 0.22=0.72= 0.92=

2.求下面各圆的面积。

3.一块圆形铁板的半径是3分米。它的面积是多少平方分米?

4.一个圆桌桌面的直径是1.2米。它的面积是多少平方米?

四思维训练

计算阴影部分的面积。(单位:分米)参考答案

课堂作业新设计

1.491625364964811000.040.490.81

2.12.56平方分米28.26平方分米1256平方厘米28.26平方米

3.28.26平方分米

4.1.1304平方米

思维训练

3.44平方分米

板书设计

圆的面积

长方形的面积=长×宽

↓ ↓↓

圆的面积=πr×r=πr2

20÷2=10(m)

3.14×102

=3.14×100

=314(m)

314×8=2512(元)

答:铺满草坪需要2512元。

备课参考教材与学情分析

本部分内容是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形的面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

课堂设计说明

1.通过实际情境,一方面使学生了解圆的面积的含义,另一方面使学生体会到在实际生活中计算圆面积的必要性。

2.教学时,强调知识迁移的过程。

平行四边形、三角形和梯形的面积公式推导过程是学生知识迁移的基础,这一环节的设计既能勾起学生对已有知识的回忆,又能启发学生运用转化的思想解决数学问题。

3.组织学生观察猜想。

先观察再猜想的方法既培养了学生的空间想象力,又发展了学生的逻辑推理能力。

圆的面积教案 4

教学目标

1、经历圆面积计算公式的推导过程,掌握圆的面积计算公式。

2、能正确运用圆面积的计算公式计算圆的面积。

3、在探究圆面积的计算公式过程中,体会转化的数学思想方法;初步感受极限的思想。

教学重难点及学具准备

教学重点和难点:

圆面积的计算公式推导。

教学准备:

圆形纸片、剪刀、多媒体课件等。

教学过程

课前谈话:

聊一聊《曹冲称象》的故事

(设计意图:放松学生的紧张心情,为课堂教学做好了心理准备;另一方面,用《曹冲称象》的故事,唤起学生已有的经验。设计“怎么不直接称大象的重量?”这一关键问题,抓住学生回答中的“用石头代替大象”“石头的重量和大象的重量相等”等要点,把学生经验中的“转化”思想激� )

教学过程:

一、开门见山,揭示课题

(出示一个圆)大家看,这是什么图形?

我们已经认识了圆,学习了圆的周长,这节课我们一起来学习圆的面积。(板书课题:圆的面积)

(设计题图:采用开门见山的的引入方式,这样设计简洁明快,结构紧凑,能保证把过程性目标落实到位。)

二、第一次探究,明确思路,体会“转化”的数学思想方法

请你想一想,什么是圆的面积呢?

圆所占平面的大小就是圆的面积。那怎么求圆的面积呢?

圆能不能转化成我们学过的图形呢?我们可以试一试。请大家利用手中的圆纸片和准备的工具在小组内研究研究。

(设计意图:在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来,沟通知识之间的联系,促成迁移。)

怎样让扇形和三角形的面积接近一些?

现在,有两种思路,一种是把圆折一折想转化成三角形,还有一种是想通过剪拼把圆转化成平行四边形,你们发现这两种方法的共同点了吗?

把圆这个新图形转化成已经学过的图形求出面积。

(设计意图:“你们发现这两种方法的共同点了吗?”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。)

三、第二次探究,明确方法,体验“极限思想”

我发现一个问题,不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢,这就是下面要研究的问题。请每个小组在两种思路中选择一种继续研究。

为什么要折这么多份?

把圆分的份数越多,其中的一份越接近三角形。三角形的底可以看成这段弧,三角形的高可以看成是圆的半径。你们会求三角形的面积吗?三角形的面积会求了,能求出圆的面积吗?

把圆剪成更多份,能让拼成的图形更接近平行四边形。

(设计意图:让学生真切地看到“自己想象的过程”,充分地体验“极限思想”。)

四、第三次探究,深化思维,推导公式

刚才同学们借助学具通过动手操作,都找到解决问题的方法了。一种是把圆转化成长方形求出面积;一种是把圆转化成三角形,得到圆的面积。可是数学学习不仅需要动手操作,更需要借助数字、字母和符号等进行动脑思考和推理。现在,老师想给大家提个更高的要求:每个小组能不能还利用刚才选择的方法,推导出圆的面积计算公式呢?

(设计意图:在第二次探究中,学生主要是借助学具进行动手操作,明晰求圆的面积的方法。操作对于小学生学习数学是必不可少的手段和方法,但数学思维的特点是要进行逻辑思考和推理。

第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。)

五、解决问题

1、现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?这个圆的半径是10厘米,面积是多少呢?请大家做在练习本上。(请一名学生到黑板上板演。)

(教师组织交流。)

2、知道圆的半径可以求出圆的面积,那么,知道直径和周长能不能求出圆的面积呢?教师出示直径为6分米的圆和周长为12.56厘米的圆,学生思考后说出求面积的方法,即要求圆的面积必须先根据直径或周长求出圆的半径。

(设计意图:因为本节课的主要目标是引导学生去经历探究圆的面积公式的过程,充分体验“转化”和“极限思想”,而有关求圆的面积的变式练习,以及利用圆的面积公式解决实际问题的练习都安排在下一节课中。因此,这节课只设计了几个基本练习,目的是检验学生对圆的面积的理解和掌握程度。)

六、小结

六年级数学圆的面积教案 5

教学目标:

1、通过教学使学生理解并掌握圆的周长和面积计算方法。

2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

3、灵活解答几何图形问题。

教学重点:

认真审题,分辨求周长或求面积。

教学过程:

一、复习。

1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

2、分辨面积与周长有什么不同?

(1)概念

圆的周长是指圆一周的长度

圆的面积是指圆所围成的平面部分的大小。

(2)计算公式

求圆的周长公式:C=d或C=2r

求圆的面积公式:S=r2

(3)使用单位

计算圆的周长用长度单位

计算圆的面积用面积单位

二、练习。

1、判断下面各题是否正确,对的打√,错的打x。

(1)计算直径为10毫米的圆的面积的。列式是3.14()

(2)半径为2厘米的圆的周长和面积相等。()

(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()

(4)面积:3.1462=3.1412=37.68()

2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

(1)半圆的周长是多少厘米?

(2)半圆的面积:

3、一个圆的周长是25.12米,它的面积是多少:

已知:C=25.12米求:S=?

r=25.12(23.14)S=r2

=4(米)=3.1442

=50.24(平方米)

4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

已知:R=7厘米=0.7分米r=0.5分米求:S=?

S环=(R2-r2)

3.14(0.72-0.52)

=3.140.24

=0.7536(平方分米)

三、巩固发展。

1、思考题p71(8)

一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

(1)围成长方形:31.42=15.7(m)(长和宽的和)

长宽=面积

当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大。

(2)围成圆形

直径:31.43.14=10(m)

半径:102=5(m)

面积:3.1452=78.5(m)

(3)比较:长方形面积:61.6m正方形面积:61.6225m圆面积:78.5m围成圆的面积最大。

2、思考题p71(9)、(10)

四、作业。

课本P71第6、7题。

教学追记:

学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:

(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。

(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。

(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。

圆的面积教案 6

教学目标:

1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3.渗透转化的数学思想和极限思想。

教学重点:

正确计算圆的面积。

教学难点:

圆面积公式的推导。

教具准备:

多媒体课件二套,圆片。

一。情景导入

1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)

师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。

(板书:圆的面积)

2.师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)

师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?

生:这堂课我们要学习圆的面积是怎样求出来的。

生:学生圆的面积公式。

师:你们知道圆的面积公式后,你们还想到什么问题?

生:圆的面积公式根据什么推导出来的。

师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。

(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)

二、动手操作,探索新知

1. 猜测(每项用课件出示)

师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?

生:不等。

师:为什么?

生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。

师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来?

生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。

师:圆的面积和正方形比较谁的面积大?

生:圆的面积大

师:可以观察出圆的面积范围在2r2-4r2

(这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)

2. 回忆旧知,

师:圆能不能直接用面积单位支量呢?为什么?

生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。

师:该怎么办呢?(教室沉默)

师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)

师:这些图形面积公式的推导方法对我们研究圆的面积有什么启示呢?

生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)

师:这个办法很好。那么把圆形转化成什么图形呢?

[评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]

3.动手操作

(1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)

师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)

(2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?

生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)

师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示

(3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)

学生汇报讨论结果。生答师继续演示课件。

生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长宽

所以圆的面积=周长的一半半径

S=r

S=r2

师:结合公式S=r2,说说圆的面积是怎样推导出来的?

(4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)

生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。

因为 三角形的面积=底高2

所以 圆的面积=周长的半径的4倍

S=4r2

S=r2

师:我们用三角形也推出了圆的面积公式 S=r2 。同学们还有其它图形来验证吗?

(5)生:我们把圆转化成梯形来验证。(课件演示)

生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。

因为梯形的面积=(上底+下底)高2

所以圆的面积=周长的一半半径的2倍

S=2r2

S=r2 用梯形的面积

3.小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(S=r2)

我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。

唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!

圆的面积必需要具备哪些条件?

[评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]

(三)课后巩固

1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。

(照应了开头,又学练习了面积的计算。)

2、 根据下面条件求出圆的面积

r =5分米 d =3米

3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积?

(用学到的知识来解决生活中的问题,培养学生的应用能力)

(四)师:这堂课大家学到了什么?有什么收获?

(学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)

[评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

圆的面积说课稿 7

尊敬的各位评委、教师:

大家好!

我是吉林市昌邑区桦皮厂镇中心小学的李强。我说课的题目是《圆的面积》。

一、教学分析

《圆的面积》选自人教版《义务教育新课程标准实验教科书》六年级上册第四单元第三节。它是在学生了解和掌握了圆的特征、学会计算圆的周长以及学习过直线平面图形的基础上进行教学的。也是今后进一步学习圆柱和圆锥等知识的基础。

根据《新课标》的要求和教材的特点,结合六年级学生已有的知识经验和学习经验,制定如下教学目标:

1、知识技能目标:正确运用圆面积的计算公式解决简单问题。

2、过程方法目标:经历圆面积计算公式的推导过程,在推导过程中体会转化的数学思想;初步感受极限思想。

3、情感态度目标:学生在探究过程中,主动与他人合作、交流,体验成功的乐趣,激发学习数学的兴趣。

教学重点:圆面积计算公式的推导。

教学难点:体会转化的数学思想,初步感受极限思想。

教具、学具准备:多媒体课件、圆片、剪刀,直尺、量角器等。

二、说教法学法

本课将“学生为主体,教师为主导,动手操作、自主探究、合作交流、体会数学思想为主线。”的理念贯穿教学的始终。教学时,针对整合点,充分利用多媒体课件动态、直观的演示,弥补动手操作和想象的不足,让学生直观感受知识的形成过程。从而突破重点和难点。

三、说教学过程{为了教学目标的有效达成,设计了如下的教学流程}

(一)创设情境,引入新课

数学来源于生活,创设现实的生活情境,“圆形草坪”情境图,一方面使学生了解圆的面积的含义,另一方面,使学生体会在实际生活中计算圆面积的必要性。

(二)动手操作,探索新知

1、初步探索,体会“转化”思想:

首先,设置问题情景,怎么求圆的面积呢?当学生束手无策时,帮助学生从头脑中搜索出已有的与解决这一问题相关的知识和方法-----转化思想。

然后,围绕“转化”教师和学生在小组内展开讨论、动手操作,合作交流,并逐步得出解决问题的思路。

接下来,引导学生说明两个组方法的共同点。为深入研究做铺垫。

2、深入研究,感受“极限”思想

学生研究时从直觉上觉得这样继续剪拼下去,得到的图形一定会越来越像平行四边形,但是随着平均分的份数越来越多,学生的动手操作变得很困难。

针对此整合点,充分利用多媒体课件直观动态的演示,弥补动手操作和想象的不足,展示把圆分成32份、64份拼成的图形越来越接近长方形。让学生真切地看到了“自己想像的过程”,建立了空间观察和空间想象力。再把拼成的图形进行对比,问:你们发现什么了?再继续分下去呢?使学生充分体验了极限思想。

3、深化思维、推导公式

这一环节,将常规教学手段和信息技术分段并用。使不同的学生在数学上得到不同的发展。

首先引导学生回忆把圆转化为长方形的过程,并发放示意图,学生借助数字、字母、符号等,运用数学的思维方式,推导圆面积的计算公式。然后针对有困难的小组,利用课件动态的演示,化静为动,化抽象为具体,使学生进一步加深对圆面积公式推导过程的理解。最后交流展示,归纳公式。

通过三个环节的教学,借助信息技术的优势,突出了重点,突破了难点。

(三)解决问题,检验巩固

本课主要教学目标是让学生经历圆面积计算公式的推导过程,体验转化和极限的数学思想,所以本节课只设计了两个基本练习,目的是巩固学生对圆面积计算的理解。

(四)回顾知识,体味思想

《新课程标准》指出,“数学的学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。课的最后我提问:“本节大家有什么收获?”这样不仅和学生回顾了本节课的数学知识,又重新体味了解决问题的数学思想。

四、教学效果

本节课,根据教学内容的特点、教学目标以及学生的认识水平以及学生不同的思维层次,将信息技术与数学学科进行有机的结合,培养了探索精神,渗透了数学思想,使不同的学生得到了不同的发展,有效地促进了教学目标的达成,提高了教学效率。

圆的面积教案 8

教学目标

1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

2.培养学生动手操作的能力,启发思维,开阔思路;

3.渗透初步的`辩证唯物主义思想。

教学重点和难点

圆面积公式的推导方法。

教学过程设计

(一)复习准备

我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

已知半径,圆周长的一半怎么求?

(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

这节课我们一起来学习圆的面积怎么计算。

(板书课题:圆的面积)

(二)学习新课

1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

展示曲变直的变化图。

2.动手操作学具,推导圆面积公式。

为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其

用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

思考:

(1)你摆的是什么图形?

(2)所摆的图形面积与圆面积有什么关系?

(3)图形的各部分相当于圆的什么?

(4)你如何推导出圆的面积?

(学生开始动手摆,小组讨论。)

指名发言。(在幻灯前边说边摆。)

①拼出长方形,学生叙述,老师板书:

②还能不能拼出其它图形?

学生可以拼出:

等等

刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

例1 一个圆的半径是4厘米,它的面积是多少平方厘米?

S=r2=3.1442=3.1416=50.24(平方厘米)

答:它的面积是50.24平方厘米。

想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?

(三)巩固反馈

1.求下面各圆的面积。

r=2(单位:分米) d=6(单位:分米)

2.选择题。

用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?

(1)3.1422=12.56(米)

(2)3.1422=12.56(平方米)

(3)3.1432=28.26(平方米)

3.思考题:

已知正方形的面积是18平方米,求圆的面积。(如图)

课堂教学设计说明

1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。

2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。

3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

圆的面积说课稿 9

一、说教材

1、教材分析

本节课是本册书第四单元第三节课。这节课是在学生充分认识了圆的各部分特征和掌握了圆的周长的计算的基础之上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱、圆锥的表面积及体积打基础。

2、学生分析

学生已经具有一定的学习能力,有进一步解决实际问题的*,学生已经掌握了用转化法推导几何图形面积公式的方法,通过本课的学习继续培养学生的动手操作能力、分析能力、探究能力以及迁移类推能力。本课学生通过合作探究应该能很顺利地掌握本课内容。

3、教学目标

知识目标:理解和掌握圆面积的计算公式,能应用公式解决实际问题。

能力目标:进一步培养学生合作探究、分析概括,以及迁移类推的能力。

情感目标:通过演示、操作,进一步让学生体验到数学来源于生活,又服务于生活的理念;唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

4、说重点、难点:

由于学生初次接触曲线图形,很难理解圆等分后的转化过程和“极限”的概念,所以我确立本课的:

教学重点:圆面积的推导过程。

教学难点:学生在合作探究中把圆转化成学过的圆形。

二、说教法

这节课,我以“猜想--估算--合作探究----验证”为主线,引导学生主动参与,在小组合作、动手探究的过程中学习,使学生在愉悦中体验成功的乐趣。

三、说学法

为了突破教学难点,我引导学生在合作探究中经历观察、操作、推理、想象的过程,又借助教具和挂图直观性,在演示中进一步观察、体会,从而使不同层次的学生都得到了相应的发展。

四、说教学流程

1、创设情境,导入新课

新课伊始,出示帮助公园的叔叔阿姨怎样计算这块圆形草坪的占地面积的问题的挂图。启发学生针对这个问题进行猜想,然后展开讨论同学们的方法是否可行,从而引出课题。此处改变了原来设计的单调的复习,融新知于解决生活实际问题之中,这样做,目的就使学生在对新知识的渴望中产生探究的兴趣。

2、合作学习,探究新知

为了帮助学生开展探究活动,第一步,我给每个小组发一张方格图,让学生在图上随意画一个圆,并估算出圆的面积。学生汇报后,激励学生评价哪种估算方法最好。这个环节目的就是使学生在估算的过程中自然而然地形成化曲为直的转化思想。

第二步,引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。在这个环节,我让孩子们用桌子上的卡纸,做个实验,在硬纸画一个圆,把圆分成若干(偶数)等份,剪开后,用这些近似等腰三角形的小纸片,拼一拼,可以同桌合作,看能发现什么?一会向老师汇报。这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。

第三步,学生汇报探究结果之后,为了使学生更直观、更形象的理解“极限”的概念,我适时进行教具演示,引导学生观察:把圆平均分成两份、四份、八份、十六份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。就这样,抽象难懂的“极限”的概念就在教具直观、形象的演示中迎刃而解了。

然后,我又用教具演示拼成的长方形的长和宽与圆的各部分间的关系,学生很快地通过长方形面积的计算推导出圆面积的计算公式,从而顺利地完成知识的迁移。(出示填空练习题)

在这个环节中,把学生的动手操作和直观、形象的教具演示相结合,对突出重点、突破难点提供了有力的保证。

3、巩固练习,拓展延伸

为了进一步巩固学生对已学知识的理解和圆的面积公式的应用,在练习题的设计上,由浅入深,注重习题的实效性、趣味性。(教学挂图出示)首先让学生计算课前所剪圆形学具的实际面积,与估算结果相比较。然后设计了基本练习题和基本应用题。最后设计了趣味性较强的题:“早上,妈妈让聪聪上学时把牛拴在草地上,下午放学的时候再把牛牵回来,拴牛的绳子长4米,牛吃草的面积有多大?如果牛每小时吃草约8平方米,那么等下午聪聪回来的时候,牛会不会挨饿?如果牛挨饿的话,你有什么好办法解决呢?”故事一出,学生便主动思考,想办法,大大调动了学生的学习积极性,同时又把知识进行了延伸与拓展。

4、巩固自学,提高能力

在完成练习题后,让学生们看教材68--69页的内容,把不明白的内容和同桌互相探讨,共同解决。

5、总结提高,小结全课。

(1)通过今天的学习你学会了什么?

(2)这节课同学们真不简单,我们把圆转化成学过的图形,自己发现、推导了圆的面积的计算方法。老师相信同学们今后一定能经过自己的努力,大家的合作探究,解决更多的数学问题。

小结既注重知识技能的总结,注重了学习方法,转化思想,独立思考,群体合作等情感态度、价值观的总结。

整个教学内容,我本着让孩子们自己动手操作、动脑思考、互相合作、发现问题、分析问题、解决问题的思路去设计,孩子们易于接受,学习气氛良好。加之老师制作的教具和挂图的配合,相信会收到较好的效果。

六年级数学圆的面积教案 10

教学目标:

1、理解圆柱表面积的含义。

2、掌握圆柱的表面积的计算方法,会正确地计算圆柱的表面积。

3、能灵活运用求表面积的有关知识解决一些简单的实际问题。

教学重点:

理解求圆柱的表面积的计算方法并能正确计算。

教学难点:

灵活运用表面积的有关知识解决实际问题。

教学方法:

探索发现,归纳总结,实际应用

学法指导:

小组合作,探究发现

教学准备:

课件

圆柱模型

教学过程:

一、激情导思(5分)

1、填空

(1)圆柱有()个底面,它们是 ();有()侧 面,是(),有()条高,这些高都()。

(2)圆柱的侧面展开是( ),长方形的长等于(),宽等于()。

(3)圆柱的侧面积=

2、求下面各圆柱的'侧面积。(只列式,不计算)

①c=9.42厘米,h=5厘米。

②d=8米,h=3米。

③r=2分米,h=6分米。

二、探究新知(15分)

小组交流:

1、圆柱的表面积怎么计算?

2、根据实际情况圆柱形烟囱,水桶,油桶的表面积怎么计算?

3、归纳总结:

(1)s表面积=s侧面积+2s底面积

(2)烟囱表面积=侧面积

(3)水桶表面积=侧面积+一个底面积

(4)油桶表面积=侧面积+两个底面积

4、出示例2:一个圆柱形油桶高6分米,底面直径4分米,做这个油桶至少需要多少平方分米的铁皮?

(1)学生独立尝试解决

(2)全班交流:

油桶的侧面积:3.14×4×6=75.36(平方分米)

油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)

油桶的表面积:75.36+25.12=100.48(平方分米)

答:做这个油桶至少需要100.48平方分米的铁皮。

三、课内练习:

1、数学书33页第2题求表面积并填表

2、计算下现各圆柱的表面积。(图中单位:厘米)

四、拓展应用

3、学校食堂要用铁皮做一根横截面半径是3分米,高是3米的圆柱形烟囱,至少需要多少平方米的铁皮?

4、修建一个圆柱形沼气池,底面直径是4米,深是2米。在池的四壁与底面抹上水泥,抹水泥部分的面积是多少平方米?

5、数学书33页第6题

四:总结:

1、圆柱表面积的`有关知识,在实际应用时要注意什么呢?

应用圆柱的表面积有关知识解决实际问题时,要具体情况具体分析,根据实际需要来计算各部分面积,必须灵活掌握。另外,在生产中备料多少,一般采用进一法,目的就是为了保证原材料够用。

五、布置作业(8分)

数学书33页第3、4、5题

板书设计: 圆柱的表面积

例2:油桶的侧面积:3.14×4×6=75.36(平方分米)

油桶的底面积:3.14×(4÷2)×(4÷2)×2=25.12(平方分米)

油桶的表面积:75.36+25.12=100.48(平方分米)

答:做这个油桶至少需要100.48平方分米的铁皮。

人教版圆的面积教学设计 11

一、创设生活情境和问题情境,激发学习兴趣

通过课件演示,先创设羊吃草的情境,引出求圆的面积的问题,再通过课件演示圆片的上色过程,让学生感知并认识圆的面积。在学习新知之前,通过正方形和圆形的大小比较,让学生猜测并估算出圆的面积大约的范围,激发学生带着悬念,迫不及待想去推导出圆的面积公式来验证自己的猜测。

二、动手剪拼,体验“化曲为直”

让学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生用“转化”的好方法,去探究圆的面积计算公式。放手让学生动手把圆剪拼成各种图形,鼓励不同拼法,让学生通过比较得出沿半径剪拼的方法是较为科学的,让学生尝试把圆拼成学过的平面图形,为后面推导面积的计算公式作了充分的铺垫。

三、多媒体演示操作,感受知识的形成

通过多媒体演示,分小组拼摆学具,让学生多种感官参与。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样以学生为主体,让学生在学习过程中,思维的能动性和创造性得到充分激发,探索能力、小组合作能力,分析问题和解决问题的能力都得到了提高。

四、分层练习,体验运用价值

结合所学的知识,让学生学以致用。解决了创设的情境问题等基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。既巩固所学的知识,又锻炼了学生的综合运用能力,拓展学生的思维,注重了每个练习的指导侧重点。

圆的面积教学设计 12

教学目标

1、通过观察、操作、分析和讨论,推导出圆的面积计算公式。

2、能够利用公式进行简单的面积计算。

3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

教学重难点

教学重点:源面积计算公式的退到。

教学难点:通过观察、操作、分析和讨论,推导出圆的面积计算公式。

教学过程

一、情景导入

1、师:看一看图中这幅画,工人叔叔提出了一个什么问题?

所有的草坪铺满将是一个什么形状?

那么求这个圆形草坪的占地面积就是求什么了?

引导学生说出求这个圆形草坪的占地面积就是求圆的面积

这节课我们就来研究圆的面积。

板书:圆的面积

师:看着这个课题你想知道什么?你有什么想法?想从这节课中学到什么?

二、导入新课

1、师生总结板书?圆的面积与什么有关?

?圆的面积怎么求?

?圆的面积有没有计算公式?

2、师:看着老师手中两个不同大小的圆,是什么决定着他们的'大小,那么可想而知,圆的面积大小与什么有关系?

引导学生猜想说出圆的面积与半径有关

板书:圆的面积与半径r有关

师:到底是不是这样的了,接下来我们就来进行深入的探究。探究之前,请同学们回忆一下平行四边形的面积公式是什么?我们是怎样推导出他的面积公式的?对于三角形和平行四边形也是运用同样的方法推导出他们的公式的

师:总的来说,先把他们剪切,再拼接,最后转化成熟悉的图形。

板书:拼切——转化——化未知为已知

师:那么你们可以把这种转化的思想运用于求圆的面积上吗?

生:可以(不可以)

师:那你想怎么切,怎么拼,把圆转化成什么图形,自己动手做一做。有想法的请举手告诉老师。

师:由于操作的局限性,我把大家拼接的效果用电脑展示出来。

首先,首先先把圆等分成8份,再拼接在一起,它大致像一个什么图形。

(平行四边形)

第二次把它等分成16份,在拼接在一起,它更想什么了?接着把她等分成32份,拼接起来,你发现了什么规律?

师:总结如果分的份数越多,每一小份就会越小,拼成的图形就会越接近长方形。

板书:近似

三、推导圆的公式

师:我们已经成功地花园为方,看看数学方式就是这么神奇,但是圆的面积公式还是不知道。请同学们看着你们手中拼接好的圆以同桌为组思考这几个问题:?圆的面积和这个近似长方形的面积有什么关系?

拼成的近似长方形的长和宽与圆的周长、半径有什么关系?

你能以计算长方形的面积推导出计算圆的面积公式吗,尝试用“因为……根据……所以……”类似这样的关联词,把你的想法在小组中发展出来。板书:因为圆形的面积=长方形的面积=长×宽=1/2周长×半径

所以圆的面积=R×RS=R

这就我们今天要学习的圆的面积公式,从公示中得出,圆的面积大小和什么关系密切,验证了刚才的猜想是正确的,所以在学知识的时候,不仅要大胆的猜测,还要用实践去验证猜测。

练习题

1、求出下列圆的面积:

2、圆形草坪的直径是20米,它的面积是多少平方米?

3、练习十

六、3小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?

四、总结

通过刚刚的练习题,我们知道了哪些条件就可以求出圆的面积了?通过这节课的学习,咱们都学会了哪些知识?

圆的面积说课稿 13

说教法:

针对六年级的学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生一起体验成功的喜悦,创造一个轻松,高效的学习氛围。

说学法:

通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

为了更好地展示数学的魅力,结合一定的多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时间和自由度使学生成为课堂的主人。

说教学过程:

(一)复习旧知,渗透转化

新课开始,我先让学生回忆已经学过的圆的认识、周长及长方形、平行四边形面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

(二)创设情景,引出课题

出示“一只小狗被它的主人用一根长10米的绳子栓在草地上,问小狗能够活动的范围有多大?”的ppt课件。启发学生进行猜想,然后展开讨论同学们的方法是否可行,从而引出课题,讲授圆的面积的概念。融新知识于解决生活实际问题之中,这样做,目的就使学生在对新知识的渴望中产生探究的兴趣。

(三)、合作学习,探索新知

为了帮助学生开展探究活动,第一步,引导学生小组合作,通过剪拼图形推导出圆的面积的计算公式。学生进行四人小组活动后,我让各小组的代表展示自己剪拼的作品,根据学生出现的多种情况,我利用课件演示把一个圆平均分成8等份、16等份、32等份、64等份、128等份后,并拼成近似的长方形,这样设计让学生在视觉上得到证实:将圆平均分的份数越多,拼成的图形越接近长方形。当把圆平均分成无数份时,拼成的图形就成了长方形,即“化曲为直”。这样的设计给予了学生自主创新的机会,学生真正成为了探究活动的主体。

第二步,我让学生讨论:根据转化的图形如何推导出圆的面积计算公式?拼成的近似长方形的长相当于圆的什么?宽相当于圆的什么?学生通过观察讨论发现:在剪拼的过程中,图形的形状变了,但面积没变,拼成的近似长方形的面积等于圆的面积,近似长方形的长等于圆的周长的一半,宽等于圆的半径,因为长方形的面积等于长乘宽,所以圆的面积等于圆的周长的一半乘半径,从而推导出圆的面积计算的字母公式s=πr。

学生汇报探究结果之后,为了使学生更直观、更形象的理解“极限”的概念,我适时进行教具演示,引导学生观察:把圆平均分成八份、十六份、三十二份后,拼在一起,再观察每次拼成的图形中闪动的曲线与圆周长的关系。学生就会明白分的份数越多,拼成的图形越接近长方形,当分的份数足够多时,曲线就接近直线了。由于在剪和拼的过程中,图形的大小没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。就这样,抽象难懂的“极限”的概念就在教具直观、形象的演示中初步理解了。

在这个环节中,把学生的动手操作和直观、形象的教具演示相结合,对突出重点、突破难点提供了有力的保证。

《圆的面积》教学设计 14

义务教育课程标准实验教科书第十一册P69~71例1、例2。

【教学目标】

1、认知目标

使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

2、过程与方法目标

经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3、情感目标

引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。

【教学难点】:理解圆的面积计算公式的推导。

【教学准备】:相应课件;圆的面积演示教具

【教学过程】

一、情境导入

出示场景——《马儿的困惑》

师:同学们,你们知道马儿吃草的大小是一个什么图形呀?

生:是一个圆形。

师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?

生:圆的面积。

师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

二、探究合作,推导圆面积公式

1、渗透“转化”的数学思想和方法。

师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?

我们先来回忆一下平行四边形的面积是怎样推导出来?

生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高 。

师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

生:这样就把一个不懂的问题转化成我们可以解决的问题。

师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

2、演示揭疑。

师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个 近似的平行四边形。

师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。

师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]

3、学生合作探究,推导公式。

(1)讨论探究,出示提示语

师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

师:你们明白要求了吗?(明白)好,开始吧。

学生汇报结果,师随机板书。

同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

(3)揭示字母公式。

师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

(4)齐读公式,强调r2=r×r(表示两个r相乘)。

从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

三、运用公式,解决问题

1.教学例1。

师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。

预设:

教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

3.求下面各圆的面积。

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

3.教学例2。

师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

师:找到解决问题的方法了吗?

师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

教师继续对学困生加强巡视,如果还有问题的学生并给予指导。

[设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]

四、课堂作业

1、教材P69页“做一做”第2小题。

2、判断题

让学生先判断,并讲一讲错误的原因。

3、填空题

复习圆的半径、直径、周长、面积之间的相互关系。

4、教材P70页练习十六第2小题。

5、完成课件练习(知道圆的周长求面积)

老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。

五、课堂总结

师:同学们,通过这节课的学习,你有什么收获?

六、布置作业

一键复制全文保存为WORD