作为一名教师,就有可能用到教案,教案是教学蓝图,可以有效提高教学效率。来参考自己需要的教案吧!问渠那得清如许,为有源头活水来,如下是可爱的小编给家人们收集整理的六年级数学下册教案【优秀13篇】,希望对大家有所启发。
教学内容:
成反比例的量。
教学目的:
使学生理解反比例的意义,会正确判断两种相关联的量是否成反比例,培养学生判断能力。
教学重点、难点:
反比例的意义和正确判断成反比例的量。
教具准备:
小黑板、投影片。
教学过程
一、 复习
1、 口答正比例的意义。
2、 怎样判断两种量成正比例?
3、 写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?
(1) 已知每小时加工零件数和加工时间,求加工零件总数。
(2) 已知每本书的价钱和购买的本数,求应付的钱。
(3) 已知每公亩产量和公亩数,求总产量。
二、引新
在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)
三、 新授
1、 教学例4。
(1)出示例4。
引导学生观察上表内数据,然后回答下面的问题:
A、表中有哪两种量?这两种量相关联吗?为什么?
B、加工的时间是否随着每小时加工的个数的变化而变化?怎样变化?
C、表中两个相的数的比值是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律?
D、这个积表示什么?写出表示它们之间的数量关系式。
学生口答,师板书
小结:
2、教学例5
用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系?请你先填写下表。
每本的页数 15 20 25 30 40 60
装订的本数 40
(1) 先填表,然后观察上表,回答下列问题:
表中有哪两种量?
装订的本数是怎样随着每本的页数变化而变化的?
表中相对应的每两个数的乘积各是多少?
你从中发现什么规律?写出它们的数量关系式?
学生回答,教师板书如下:
每本页数装订的本数=纸的总页数(一定)
(2) 小结:
从上表可以看出:每本的页数和装订的本数也是两种相关联的量,装订的本数是随着本页数的变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。它们扩大、缩小的规律是:每本的页数和装订的本数的积总是一定的。
(3) 归纳反比例的意义及关系式。
(1)请你比较一下上面的例4、例5,它们有什么共同特点?(教师引导学生归纳概括出反比例的意义)
(2)判断成反比例量的方法:根据反比例的意义判断两种量是否面反比例的量要具备的条件:
a两种相关联的量。
b一种量变化,另一种也随着变化。
C两种量中相对应的两个数的积一定。
(3)例4中,加工的时间随着每小时加工数量的变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量。想一想:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?(指名几个学生口述,教师帮助纠正)
(4) 概括关系式。
如果用字母X和Y表示两种相关联的量,用R表示它们的积(一定),反比例关系可以用下面的式子表示:
XY=R(一定)
3.教学例6。
播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
师:大家能不能根据反比例的意义判断一下?
指名口述,师讲评。
(每天播种的公顷数和要用的天数是两6种相关联的量,每天播种的公顷数天数=播种的总公顷数,已知播种的总公顷数一定,也就是每天播种的公顷数和天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。)
四、小结
判断两种相关联的量是否成反比例,关键是看两种相关联的量中相对应的两个数的积是否一定,积一定这两种量成反比例。
讨论:想一想:播种总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?
五、巩固练习
课本第16页的做一做练后讲评。
六、课内外作业
完成练习三的第4――7题。
教学目标
1、结合具体情境,体会生活中存在着大量互相依赖的变量。
2、在具体情境中,尝试用自己的语言描述两个变量之间的关系。
教学重点
结合具体情境,体会生活中存在着大量互相依赖的变量并尝试用自己的语言描述两个变量之间的关系。
教学过程
一、创设情境,导入新课。
课件出示一个人从婴儿、幼儿、儿童的成长变化图,让学生观察,并说一说图中的变化情况。
1、用手势表示出自己从出生到现在身高的变化。
2、用手势表示出自己从出生到现在体重的变化。
3、师:身高、体重都会变化,这些都是变化的量。(板书课题)
在生活中,很多事物在发生变化。如:每天的气温、人的体温等。有时候,一个量的变化能引起另一个量的变化。比如:人的身高一般会随着年龄的变化而变化,汽车行驶的路程会随着时间的变化而变化,我们把这些变化的量,称之为“变量”。今天这节课,我们就一起来认识变化的量以及它们之间的变化关系。
二、观察表格,感知变量。
淘气和笑笑分别用表格和图表示了妙想6岁前的体重变化情况。我们一起来看一看。
出示图片,教师引导学生观察,鼓励学生积极发言。
1、从表中你知道了什么?
2、观察表中的数据,哪些量在发生变化?
3、年龄和体重,谁随着谁的变化而变化?
4、说一说妙想6岁前的体重是如何随年龄增长而变化的?
5、体重一直会随年龄的增长而变化吗?
师:在上表中,有体重和年龄两个变量,而且随着年龄的'增长,体重也在增长,我们就说体重和年龄是一组相关联的量。(板书:相关联的量)
三、自主探究,感悟变量。
(一)活动一:骆驼的体温
教师引导学生自主观察骆驼体温随着时间变化统计图,讨论、交流下列问题。
1、图中所反映的是哪两个变化的量?
2、横轴表示什么?纵轴表示什么?
同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。
3、一天中,骆驼的体温最高是多少?最低是多少?
4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
5、第二天8时在图上是哪一个时刻?第二天8时骆驼的体温与前一天8时的体温有什么关系?
6、第三天12时骆驼的体温是多少?
7、骆驼的体温有什么变化的规律吗?
教师小结:骆驼体温随着时间变化而呈周期性的变化。
(二)活动二:蟋蟀的叫声
刚才我们了解到骆驼一些有趣的现象,其实自然界中这种有趣的现象还很多很多,不信,我们来看一看娇小的蟋蟀有什么有趣的现象。
1、请同学们看课本40页第3小题。
2、全班展示,交流。(h=t÷7+3)
3、理解式子中量的变化。
师:如果蟋蟀叫了7次,这时的气温大约是多少?
如果蟋蟀叫了14次,这时的气温大约是多少?
如果蟋蟀叫了28次呢?
你能发现蟋蟀叫的次数与气温之间是怎样变化的?
(三)课堂小结:
1、观察这三道题,你发现它们之间有什么相同的地方吗?
2、例举一个量随着另一个量变化而变化的例子。
(路程)随着(时间)的变化而变化,(气温)随着(时间)的变化而变化,(工作时间)随着(工作总量)的变化而变化,(汽车载重量)随着(汽车的数量)的变化而变化
四、练习巩固,加深理解。
1、连一连,把相互变化的量连起来。
路程正方形面积
边长购卖数量
总价行驶时间
2、填一填。
(1)香蕉的单价一定,购买的()和()在发生变化。
(2)轮船行驶的速度一定,行驶的()和()在发生变化。
(3)李叔叔从家到厂家骑自行车的()和()在发生变化。
3、判断下面两个变量是不是相关联的量。
(1)人的长相与身高。
(2)正方形的边长与周长。
(3)人的身高与跳绳的速度。
(4)每袋米有50千克,米的袋数与米的总质量。
4、举例说一说,下面这两道题中一个量是怎样随另一个量变化而变化的?
(1)一种故事书每本3元,买书的总价与书的本数。
(2)一个长方形的面积是24平方厘米,长方形的长与宽。
五、课堂小结。
这节课就要结束了,能谈谈这节课你的感受或你还有什么问题?
一、教学目标:
1、通过操作、观察,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题,圆的面积教案。
2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣和成功。
二、教学准备:
1、复习已学过的平面图形的面积推导过程;
2、教具学具:课件、生活中呈圆形的物品、直尺、三角板、棉线、剪刀、圆形纸片
三、教学过程:
(一)创设情景,提出问题
1、多媒体出示:学校草坪中间的"喷水喉"洒了一圈水
师:看了刚才的演示,你想提出哪些与数学有关的问题?
(结合学生的提问,抓住有关周长和面积的问题,引导学生区分圆的周长和面积,同时引出课题"圆的面积")
2、"圆面积"的含义:圆所占平面的大小叫做圆的面积。
(二)自主探究,合作交流
1、猜想:
(1)出示大小不同的两个圆,让学生比较,猜想圆面积的大小和什么有关?(半径)那么圆的面积和半径的关系究竟是怎么样的呢?
(2)出示边长和大圆直径相同的正方形,和大圆比较,你发现了什么?(重叠后,大圆刚好能够放进正方形里面)这说明了什么?(边长=2r)
引导学生将大正方形分割成四个小正方形,观察比较(每个小正方形的面积是r2,大正方形的面积就是4 r2,圆的面积比4 r2小,可能比3 r2大。)
2、验证:
(1)引导转化:
师:猜想只能是大致的估计,圆的面积公式需要同学们动手推导出来。回忆一下,以前学过的平面图形(课件出示),它们的面积公式是什么?分别怎么推导出来的?(略)
以上这些图形都是通过剪拼转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形,推导面积公式呢?你能猜一猜吗?(长方形、正方形、平行四边形、三角形、梯形)
(2)动手操作:
①分小组动手操作,把圆平均分成若干份,剪开后,拼成其他图形,看谁拼得好,拼出的图形多。
②展示交流并介绍:你是怎样拼接的?拼出来的图形近似于什么?为什么只能说是"近似"?能不能把拼出的图形的边变直一点?
学生回答,课件演示(以拼成的近似长方形为例,平均分成32份、64份)想象一下,平均分成128份、256份…会是什么情形?
③小结:分的份数越多,拼成的图形越接近于长方形,教案《圆的。面积教案》。
(3)动手推导:
①引导:当圆转化成近似的长方形后,圆和它有什么联系呢?(近似长方形的长和宽与圆的周长和半径有什么关系?)如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,怎样推导出所要研究的圆的面积公式?
学生讨论交流:长方形的长是圆周长的一半,即C/2=2πr/2=πr,宽是圆的半径。教师板书如下:
长方形的面积=长×宽
↓↓
圆的面积=πr×r=πr2 S=πr2
②自主探究:
A、把圆转化成一个近似的平行四边形
平行四边形的底是圆周长的一半,高是半径
B、把圆转化成一个近似的三角形
三角形的底是圆周长的1/4,高是4r C、把圆转化成一个近似的梯形
梯形的上底是圆周长的3/16,下底是圆周长的5/16,高是2r
质疑:为什么不能把圆转化成一个近似的正方形吗?(用假设法,如果圆能拼成近似的正方形,那么它的其中一条边是圆周长的一半,另一条是圆的半径。而无论哪个圆,它的半径都不可能与圆周长的一半相等。)
你还能用其他更简洁的方法推导圆的面积吗?
D、用圆的1/4拼成一个近似的小平行四边形
E、圆的1/16就是一个近似的小三角形
③归纳评价:通过把圆转化成近似的平行四边形、三角形、梯形,或先算出其中的一小份再求出总的面积的方法,都能推导出圆的面积公式:S=πr2
� 对吗?
3、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,老师祝贺大家取得成功!那么,求圆的面积需要什么条件呢?(半径)是否只有知道半径才能求圆的面积?
(三)实践运用,体验生活
1、求下面各个圆的面积。(课件出示)
半径为3分米;直径为10米。
2、拿出自己带来的圆形物品,动手测量后计算出它的面积。
介绍你测量的方法,为什么可以这样测量?计算圆面积的依据是什么?
3、一张圆桌的桌面直径是1.5米,油漆师傅要在圆桌面的边上贴一圈铝合金,并在正面漆上油漆。请问,油漆师傅要买多长的铝合金,油漆的面积有多大?
4、王大伯想用31.4米长的铁丝在后院围一个菜园,要使面积大一些,该围成正方形好还是圆形好呢?你能当回小参谋吗?
5、城市广场中央有一个具也没有,所以无法测量。他一边延喷泉外圈慢慢走着,一边想,走完一圈,终于想出了一个好办法,算出了喷泉池的面积。你知道小琪用了什么方法吗?
(四)总结评价,拓展延伸
1、今天我们学了什么知识?是怎样学习的?你有什么感受吗?
2、在生活中哪些地方需要用到圆面积的知识?你打算如何运用?
一、方向与位置
2.学生自主完成第(2)题,然后重点交流不同的方法。
师:同学们根据平面图上的比例尺和角度能够准确描述出物体的位置。如果给出比例尺和现实生活中的实际距离和角度,你能画出平面图吗?现在,请同学们看试一试的题和图,谁来说一说线段比例尺表示什么?
师:看一看书上的第4个问题,再观察一下我们画出的平面图,�
6.师生共同总结关于数对的知识。
四、尝试练习
1.提出“试一试”的问题。先让学生说一说数对表示的含义,再说一说方格图中纵向、横向数字表示的含义。
2.学生尝试完成确定各点的位置。
五、课堂练习
1.先让学生观察图,了解座位是怎样摆放的,再找出该坐哪个座位。最后,说一说他的座位可以用哪个数对表示。
2.用数对表示位置的变式练习。先指导学生理解题意再由学生独立完成。
六、知识拓展
介绍地球仪上数对的应用。激发学生课后收集资料的兴趣。。
让学生介绍自己在教室里的具体位置,唤起学生已有的知识和经验,调动学生参与的兴趣。
第一单元:认识负数
教学内容:
1、认识负数:教材第1—6页例1—例4以及练习一
2、实践活动:面积是多少第10—11页
教学目标:
1、让学生在熟悉的生活情境中初步认识负数,知道负数和正数的读、写方法,知道0既不是正数也不是负数,正数都大于0,负数都小于0。
2、让学生初步学会用负数表示日常生活中的简单问题,体会数学与日常生活中的简单联系。
3、通过学生的实践操作,让学生初步体会化难为易、化繁为简的解决问题的策�
教学重点:正数、负数的意义
教学难点:理解0既不是正数也不是负数
课时安排:3课时
(1)认识负数的意义
教学内容:p.1、2,完成第3页的练一练和练习一的第1~5题
教学目标:
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。
3、体验数学与日常生活密切相关,激发学生对数学的兴趣。
教学重点:在现实情境中理解正负数及零的意义。
教学难点:用正负数描述生活中的现象。
教学准备:温度计挂图等
教学过程:
一、谈话导入:
通过复习,你知道这节课要学什么么?(板书:负数)
说我们以前认识过哪些数?(自然数、小数、分数)
分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)
二、学习例1:
1、你知道今天的最高温度么?你能在温度计上找到这个温度么?
介绍温度计:(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。(3)刻度。要注意一大格、一小格分别表示多少度?
在温度计上找到表示35℃的刻度。
你知道什么时候是0℃吗?(水和冰的混合物)
你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?
分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。
读一读:正35,负5
分别说说在这3个不同的温度你的感受。
2、完成试一试:
写出下面温度计上显示的气温各是多少摄氏度,并读一读。
对零下几度,可能学生会不能正确地看,注意指导。
3、完成第3页第2题的看图写一写,再读一读。
简单介绍有关赤道、北极、南极的知识。
4、完成第6页第4题:
先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。
5、读第7页第5题。,让学生说说体会。
6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。
三、学习例2:
1、出示例2图片,介绍“海平面”“海拔”的基本知识。
让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。
再指一指吐鲁番盆地的海拔。
指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。
用你自己的理解来说说这样记录有什么好处?
2、完成第6页第1题:用正数或负数表示下面的海拔高度。
读一读第2题的海拔高度,它们是高于海平面还是低于海平面。
三、认识正负数的意义:
1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。黑板上这些数,哪些是正数?哪些是负数?
你能用自己的话来说说怎样的数是正数?怎样的数是负数?
0呢?为什么?
2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。
3、完成第6页第3题:分别写出5个正数和5个负数。
四、全课小结:(略)
教学内容:
教科书30到32页。
教学目标:
1、使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。并能应用解决生活中的实际问题。
2、 通过小组合作研讨、实践操作,培养学生的合作意识和创新思维的能力。
3、 通过教学情境,培养学生热爱祖国的思想感情。
教学过程
一、 导入新课
1、 同学们,今天老师请你们当回设计师,请大家将我们教室占地的平面图画在白纸上。(长8米、宽6米)
2、 请画好的将自己的作品贴在黑板上。有不一样的请你贴上来。
3、 按大小分类。(讨论后说明随意画的长方形不是教室的平面图)
4、 讨论:将这么大的教室画到图上你采用了什么办法?(缩小)。为什么这些图有大有小呢?
5、 分别请同学说说自己画的设想。
6、 在同学们贴上的纸上介绍图上距离、(画在图上的8厘米、6厘米就是图上距离)。实际距离(同学们量出的教室的长8米,宽6米就是实际距离。同学们缩小的倍数就是你这幅图的比例尺。请你写上自己的比例尺。
7、 板书课题。“认识比例尺”
二、 新课展开
1、自学课文
让学生看课本上的第56页,初步接触图上距离和实际距离的比叫做比例尺。比例尺=图上距离比实际距离
说明:我们所缩小的倍数,一般取图上距离与实际距离的比,为计算方便通常把比例尺写成前项是1的比。
改写自己所画的图的比例尺。
2、出示中国地图(投影)
找出这幅地图的比例尺:1:30000000
(电脑演示放大效果)
介绍线段比例尺。你能看懂它的意思吗?与数值比例尺比较。(线段比例尺操作性强的,便于估计)。
你能从地图上大致的估计上海到北京的距离吗?小组讨论、反馈。评价各种计算的方法。板书:图上距离∶比例尺=实际距离
小组反馈,评比优秀方案。
电脑课件演示。
根据讨论板书:
补充板书:
把实际距离按原来的大小画出来,比例尺就是1:1
三、 练习
1|试一试。
四、 作业:31页练一练。
教学目标
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是成反比例。
3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
教学重点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学难点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程
一、复习
1.什么是正比例的量?
2.判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定。
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
4.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
教学内容:
苏教版义务教育课程标准实验教科书第60-61页
教材分析:
在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。
“实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。
在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。
教学目标:
⑴使学生会用工具测量两点间的距离、步测和目测的方法。
⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。
⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。
教学重点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学难点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学具准备:
卷尺、标杆、50米跑道。
教学流程:
一、揭示课题,明确学习内容。
⑴揭示课题。
板书课题——实际测量。让学生说说对课题的理解。
⑵了解测量工具。
让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。
⑶明确学习内容。
测量地面上相隔较远的两点间的距离;步测和目测。
二、了解测量知识,为实践活动作准备。
⑴测量相隔较远的两点间的距离。
理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。
理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;
观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)
掌握测定直线的步骤:测定直线;分段量出;记录计算。
⑵学习步测的方法。
理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。
掌握步测的方法:用步数×每一步的距离。
理解步测的关键:确定平均步长。
掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。
理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。
⑶学习目测的方法。
观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。
目测较短距离:人书本的长和宽;课桌的长和宽等等;
理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。
三、实践活动。
⑴测定直线。
⑵确定平均步长。
⑶步测篮球场的长和宽。
⑷目测教学楼的长度。
第三单元分数除法
第10课时按比例分配的实际问题
教学内容:
课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重难点:
理解按比例分配实际问题的意义,掌握解题的关键。
课前准备:
课件
教学过程:
一、创设情境、引入新知
根据信息填空:
(1)男生有31人,女生有21人,男生人数是女生人数的。
(2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?
师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。
二、探究新知
1、出示例11中的实物图及例题。
(1)让学生阅读题目后说说你知道哪些信息?
(2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:
①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;
②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。
③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。
师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。
学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?
说说你是怎样做的?
方法一:3+2=530÷5×330÷5×2
方法二:30×3/530×2/5
2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?
说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)
如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)
3、完成练一练第1题。
4、完成试一试。
出示试一试。
提问:“按各小组人数的比分配”是什么意思?你想到了什么?
5、归纳(讨论)。
(1)比较例题与试一试题目在解答方法上有什么共同特点?
(2)怎么解答?
求总份数,各部分量占总数量的几分之几,最后求各部分量。
(3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)
三、应用比的知识解决实际问题
1、练一练第2题。
独立完成后进行交流
指出:把180块巧克力按照三个班的人数来分配,就是按怎样的`比进行分配?
2、练一练第3题。
独立填表,完成后集体核对。
3、练习十第1题。
四、课堂总结
这节课学过以后,你有什么收获?
五、布置作业:
练习十第2、3题。
教学反思:
教学过程:
(一)导引探究,由表及里
教学例1,认识成正比例的量。
1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。
时间(时)123456……路程(千米)80160240320400480……
在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)
2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。
3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。
4.让学生根据板书完整地说一说表中路程和时间成什么关系。
[数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]
(二)自主探究,尝试归纳
出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?
速度(千米/时)406080100120……时间(时)3020151210……
1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?
2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。
3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。
[从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]
(三)对比探究,把握本质规律
1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。
多媒体呈现:
例1路程/时间=速度(一定)
路程和时间成正比例
例2速度×时间;路程(一定)
速度和时间成反比例
2.探究活动。
(1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。
(2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。
[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]
(3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。
启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?
根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。
[概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]
3.组织对比性练习。
(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:
表1
数量/本2030405060……总价/元3045607590……
表2
单价/元1。52456……数量/本4030151210……
在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!
在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。
[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]
(2)成比例与不成比例的对比练习。
下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?
①圆的直径和周长。
②小麦每公顷产量一定,小麦的公顷数和总产量。
③书的总页数一定,已经看的页数和未看的页数。
[这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]
(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。
[举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:负数的意义。
教学过程:
一、谈话交流:谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。怎样用数学方式来表示这些相反意义的量呢?请同学们选择一例,试着写出表示方法。……
(3)展示交流。……
2.认识正、负数。
(1)引入正、负数。谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。①同桌交流。
②全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:……)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么?你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)你能很快找到12℃、-3℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:(完善板书。)
5.练一练。读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史。(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):
“中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用:
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作_________℃,夜间的平均温度为零下150℃,记作_____________℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4.表示时间。(练习一第3题。)
“净含量:10±0.1kg”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
课后作业:1.完成数练第1页。
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:
负数的意义。
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨: -15 ℃~-3 ℃
北京: -5 ℃~5 ℃
深圳: 12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
(完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史。
(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):
教学目的:
1、使学生正确地认识圆锥,掌握圆锥的特征以及与圆柱的区别和联系。
2、使学生学会测量圆锥的高,初步培养学生动手操作能力和等价转化的数学思想。
3、培养学生有序观察、合作学习、合理猜想和科学探究的能力,同时培养学生的空间观念。
4、培养学生的数学意识和创新精神与实践能力。
教学重点:圆锥高的测量
教学难点:空间观念的培养。
教具准备:圆柱体、圆锥体;垫板;直尺、大三角板;多媒体课件
学具准备:圆锥体模型、垫板;直尺、
教学过程:
课前交流
问题情境一
同学们,通过小学五年多的数学课堂学习,你知道数学是专门研究什么内容的吗?
数学是研究空间形式和数量关系的科学。也就是说,数学不止是研究加减乘除运算,应用题中的数量关系,还要研究空间形式。研究空间形式,就是研究现实世界中物体的形状、大小与位置关系。等你们上了中学,你们将系统学习这类知识。(板书:形状、大小、位置关系)
问题情境二
到目前为止,大家想想,我们已经学习了物体的哪些特殊形状?(三角形、长方形、正方形、圆、长方体、正方体、圆柱)你能在生活中找出具有这些形状的物体吗?
一、导入新课
1、在日常生活中我们还常常看到这样形状的物体(电脑显示砂堆、陀螺、漏斗等实物。根据实物图抽象成立体模型图)。
2、问题情境三
这些物体的形状有一个共同的名字,你能给它取个名字吗?� )(板书课题:圆锥)对于圆锥你想了解些什么?(板书:面、高、体积;)
3、我们教材中所讲的圆锥,都是直圆锥。今天我们就来认识这种圆锥。
二、探索研究:
(一)圆锥形状的认识。
1、引导观察特征
(1)问题情境四
取出圆锥体学具,请大家看一看,摸一摸,与圆柱比一比,你看到了什么?摸到了什么?说给同桌听。
(2)让一生上来边指边说,回答后师板书:
顶点:1个
侧面(曲面)
面:2个
底面(圆)
(3)同桌互相指着说一遍。
画透视图的时候应该先画一个椭圆,然后在椭圆的正上方画上顶点,最后把顶点与底面连起来。
(二)圆锥大小的研究
1、问题情境五
同学们,圆锥有大有小,你知道圆锥的大小与什么有关?
比较红色和黄色圆锥体,你发现什么?(圆锥体的大小与底面的大小有关)
比较红色和绿色圆锥体,一个高、一个低,你又发现了什么?(圆锥体的大小与高有关)
2、圆锥高的认识。
问题情境六
(1)高在哪里?两人一组指一指,说一说。谁愿意指给大家看?他指得对吗?有没不同意见?
(2)指母线,这条是不是圆锥的高?为什么不是?你能举个例子驳倒他吗?出示等高但母线不等的两圆锥,测量母线的长,发现长短不一,得出母线不足以代表圆锥的高
(3)你能用自己的话说说什么是圆锥的高?(生回答的基础上,电脑显示,闪烁顶点和圆心,再连起来画一条虚线。进一步明确圆锥的高的概念)
(4)圆柱的高有无数条,圆锥的高有几条?为什么?(教师在黑板上作高,板书:1条)
(5)在下发的练习纸上的立体图上画高,标上字母h。
3、圆锥高的测量
问题情境七
(1)刚才我们在透视图上找到了圆锥的高,那像这样的物体,它的高看得见吗?看不见怎么能知道它高多少呢?你有办法吗?下面就请同学们三人一组,测量黄色圆锥体和绿色圆锥体的高,小组内先讨论一下,再利用手中的工具,动手试试看,有困难的可以看书本。
(2)汇报测量的步骤及测量结果。你们小组测出来是多少?你们呢?还有不同的结果吗?
你们是怎么测的?来,上台演示一下。大家是这样测的吗?
(3)师问:其实,老师让你们测的黄色圆锥和绿色圆锥的高度都是一样的,为什么测量结果不太一致呢?� 教师在透视图上作图演示。)
(5)照电脑的样子再测红色圆锥体的高。有没不同意见?
4、认识圆锥侧面展开图
问题情境八
(1)圆柱的侧面展开图是一个长方形,猜一猜,圆锥的侧面展开图应该是什么形状呢?
(2)验证:究竟谁说得对?让学生把圆锥体侧面沿着顶点到圆周的一条线段剪开验证。强调圆锥体的侧面展开是扇形。教师把图贴在黑板上。
5、想象,对圆锥有一个完整的认识。
问题情境九
出示直角三角板:把直角三角形一条直角边紧贴桌上,握住一个角的顶点旋转一周,会形成一个什么形体?三角形的三条边分别是圆锥体的什么?
三、实践辨析
1、找一找,哪些图形是圆锥体?
2、判断
(1)圆锥有无数条高()
(2)圆锥的底面是一个椭圆()
(3)圆锥的侧面是一个曲面,展开后是一个扇形()
(4)从圆锥的顶点到底面上任意一点的连线叫做圆锥的高()
问题情境十
同桌交流说说圆柱和圆锥的特征,并比较它们的相同点和不同点。指名回答后,整理入下表:
形体
相同点
不同点
底面形状
侧面
底面个数
侧面展开
高
圆柱
圆形
曲面
2个
长方形
无数条
圆锥
圆形
曲面
1个
扇形
1条
四、课外延伸
问题情境十一
这节课我们学习了什么?除了上面表中的一些内容外,你还学到了什么知识?你还学到了什么本领?你还想了解有关圆锥的哪些知识?
《圆锥的认识》一课,体现了教师扎实的教学功底、艺术性的教学方法和高屋建瓴处理教材的能力,体现了新课程的教学理念和以学生发展为本的教学观。
1、给学生提供自主参与学习的时间和空间,以学生发展为本开展课堂有效教学。
现代教育的一个非常重要理念是以学生的发展为本。学生是学习的'主体,学生的发展在很大程度上,取决于主体意识的形式和主体参与能力的培养。要实现以学生的发展为本,应该注意让学生学习自行获得数学知识的方法,学习主动参与数学实践的能力,获得终生受用的数学创造才能。
在本课例中,无论问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,老师都给予学生充足的时间进行尝试、研究和讨论中进行,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,充分体现了以学生发展为本的现代教育思想。
2、努力引导学生自主构建“命题网络(propositional network)结构”,高屋建瓴的开展课堂有效教学。
认知心理学告诉我们:知识存贮要分档,要结构化,纵横的网络越多,越便于提取知识。教会学生将知识结构化是学生学会学习的有效方法。教师要善于调动学生已有的知识,并引导他们把旧知识和新知识有机的结合起来,形成网络(network),掌握知识系统的结构。
本课例从“你知道数学是专门研究什么内容的吗?” “到目前为止,大家想想,我们已经学习了物体的哪些特殊形状?”“请大家看一看,摸一摸,与圆柱比一比,你看到了什么?摸到了什么?” “说说圆柱和圆锥的特征,并比较它们的相同点和不同点”。等一系列问题着手,让学生初步了解数学并不只是算术,它还要研究现实世界中物体的形状、大小与位置关系,让学生站在数学科学的高度把握学习数学,培养数学意识。在回忆旧知识的同时学习新知识,并将新知和旧知有机的结合起来。只有教会学生将知识归纳、总结,随着学习的不断深入,才会逐渐形成数学的思维能力和完整的结构体系,才能灵活地应用数学知识,实现创新和创造。
3、设合理的问题情境,引导学生主动建构,开展协作、探究式课堂学习。
从建构主义理论的基本理念来看:“知识不是被动接受的,而是由认知主体主动建构的”。荷兰著名的数学教育家弗赖登塔尔也强调:“学习数学唯一的方法是实行‘再创造’,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生进行再创造的工作,而不是把现有的知识灌输给学生.”一般的人,包括学生,他们的能力可能比不上数学家,但通过类似的数学活动,也可以很好的获得数学或理解数学。
在本课例中,老师积极地创造机会让学生自己去学习或者去探究问题.通过“看一看”,“摸一摸”,“比一比”,“指一指”,“说一说”,“猜一猜”等问题情境,让学生根据问题有目的地大胆猜想、动手实践、自主探究、协作学习,使学生学会学习、学会交流、学会分享信息,培养乐于合作的团队精神。
4、传统教具、学具和现代多媒体、网络技术相结合,让数学课堂焕发生命活力。
从认知心理学的角度看,要建立以学生为主体的教学模式,应当将学习活动重点放在学习主体和社会环境的相互作用上。也就是在数学课堂上,应该能够亲身经历与感受数学在现实背景中的发生、发展过程,通过观察、实验、探索、思考和师生、生生间的交流获得知识。
本课例中,将传统教具、学具和现代多媒体网络技术有机的结合起来,让学生亲身感受数学,在“找”中学,在“测”中学,在“思”中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学“动”起来、“活”起来,让学生在“做”中学,使数学课堂焕发出生命活力。
一、教学目标:
1、知识与技能:
(1)理解“成数”的含义,能熟练的把成数写成分数、百分数。知道它们在生活中的简单应用。
(2)在理解“成数”含义的基础上,能自主解决与此相关的实际问题,培养学生运用知识解决实际问题的能力。
2、过程与方法:利用生活情境重现结合所学数学知识,发挥学生学习的主动性;同时通过引导对比和学生的自主探索,发现知识之间的联系。
3、情感态度与价值观:感受数学知识与生活的紧密联系,激发学习兴趣。
二、教学重难点:
教学重点:理解“成数”的含义,能熟练的把成数写成分数、百分数。正确解答有关成数的实际问题。
教学难点:在理解的基础上,与百分数应用题建立联系,正确解决问题。
三、教学准备:
1、布置学生课前收集生活中有关成数的信息。
2、要求学生复习百分数应用题的解题方法。
3、教学课件
四、教学过程:
(一)谈话导入。
同学们,在上节课当中,我们应用百分数的知识解决折扣的问题,今天继续应用百分数的知识来解决生活当中成数的问题,那么什么是成数呢?成数与百分数又有什么关系?这节课我们就来学习有关成数的知识。(板书课题)
师:农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”……
师:同学们有留意到类似的新闻报道吗?
生:学生汇报收集相关报道。
[设计意图:师通过谈话直接引出课题,让学生知道本节课要学习的课题和带着问题去学习求学,再从生活中知道的有关成数的信息进行汇报,让学生明白成数与有生活的紧密联系]
(二)互动新授。
1、认识成数的含义。(打开课本第9页自主学习)
(成数:表示一个数是另一个数的十分之几,通称“几成”)
[设计意图:让学生自主学习认识成数的含义]
2、会把成数改写成分数,百分数。
(1)成数与分数、百分数又有什么关系?你是怎样理解?比如说,增产“二成”,你怎么理解?(学生讨论并回答)
教师板书:
成数 分数 百分数
二成 十分之二 20%
(2)、理解三成五的改写:二成就是十分之二,也就是20%;那么三成五又怎样改写呢?(学生汇报并板书)
(3)试说说以下成数表示什么?
①出口汽车总量比去年增加三成。这里的“三成”表示什么?
②北京出游人数比去年增加两成。这里的“两成”表示什么?
(引导学生讨论并回答)
(3)应用练习
填空:
[设计意图:让学生自主学习合作交流探究发现知识,让学生经历知识生成过程,学生掌握好百分数、分数与成数互相改写后再进行练习巩固]
3、运用成数的含义解决实际问题。
(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
①学生读题,理解获取信息。引导学生把成数转化为百分数。
②分4人小组讨论学习。(利用学习单中的线段图帮助理解,自主学习。)
③指名学生汇报说说解题思路,师生共同学习,列式解答并板书。
思路一:今年比去年节电二成五,也就是今年比去年少25%,今年用电是去年的(1-25%),即350×(1-25%)。
思路二:去年用电数减去今年节约的度数,即350-350×25%。
(2)师小结:结合例2的板书进行小结,引导学生抓住百分数应用题的解题关键去解题 ,可以根据自己的理解和计算能力,选择合适的方法进行计算。[设计意图:学生读题获取信息后,再分小组进行合作交流的自主学习,充分发挥学生主体学习地位,把学习的自主权返还给学生]
(3)课件出示教材第9页“做一做”:(打开课本第9页)
某市20xx年出境旅游人数为15000人次,比上一年增长两成。该市20xx年出境旅游人数为多少人次?
①同桌交流学习的方式完成“做一做”,师进行巡视指导。
②指名学生汇报解题方法。(让学生说出解题思路)
③展示列式解答共同纠正。
(4)师对“做一做”小结:引导学生理解此题的解法。关键句中找单位“1”,理解等量关系后再列式解答。
[设计意图:第9页的做一做是例2的补充,此题是百分数的除法应用题。此题同样取用同桌交流学习方式完成,百分数的除法应用题学生已有了解题的知识,因此继续放手学生自主探究解决问题]
(5)新授小结:结合例2说说我们是怎么解决有关“成数”的问题的?
在解答这类应用题时,关键是理解“成数”的`含义,把“成数”化成百分数,再按解百分数应用题的方法解答。
(三)应用巩固。
今天我们学习的知识可以帮助我们解决生活中的一些问题,现在请你来算一算,做一做。
1.课件出示教材第13页练习二第4题。
某县前年秋粮产量为2.8万吨,去年比前年增产三成。去年秋粮产量是多少万吨?
(1)自已读题,找出关键句,想想题目中增长的3成,是谁的3成?也就是把谁看作单位“1”?应该怎样进行计算?三成改写百分数是30%。
(2)完成练习,可同桌交流。
(3)指名汇报,共同纠正。
2.课件出示教材第13页练习二第5题。
某汽车出口公司二月份出口汽车1.3万辆,比上月增长3成。一月份出口汽车多少万辆?
(1)自已读题,理解题意。
(2)完成题目。
(3)汇报纠正。
[设计意图:通过应用练习进一步对新课巩固,及时反馈信息。]
(四)畅谈收获。让学生说这节课的学习有什么收获?(学生回答)
(五)课后作业:完成练习册中本课时的练习。
(六)板书设计:
例2:
方法一: 350×(1-25%) 方法二:350-350×25%
=350×75% =350-87.5
=262.5(万千瓦时) =262.5(万千瓦时)
答:今年用电262.5万千瓦时。
(七)课后反思:
本节课,我围绕教学目标从如下几个环节开展了教学。
(谈话导入-互动新授-应用巩固-畅谈收获-作业布置)先从谈话导入课题,让学生知道本课的学习内容,带着问题去学习;再进行互动新授,互动学习充分发挥学生主体作用,把学习的自主权返还给学生,让学生在合作交流自主探究中发现知识,这样学生亲身经历了知识的生成过程,学习效果会更好。再后根据例题设计了相关的练习进行应用巩固。从这节课反馈情况看,学生对成数与分数、百分数之间的互相改写已掌握得很好;在解决实际问题时引导学生把成数改写成百分数后就是我们上学期所学的百分数应用题,运用百分数应用题的解法就能解决今天所学的问题,解决实际问题也达到了预期目标。这节课存在的问题是:1、农村小学的学生表述能力不够,有待进一步培养。2、有少部分学生对单位“1”的量理解不够造成错误,今后继续加强练习。
教学内容
(1)负数的初步认识
(2)(教材第3页例2)。
教学目标
通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。
重点难点
体会引入负数的必要性,初步理解负数的含义。
情景导入
教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的组织学生讨论回忆上一课内容。
师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)
新课讲授
1、教学例2。
(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(—)或(+)”这一栏的数各表示什么意义吗组织学生分组讨论、交流,然后指名汇报。
(2)引导学生归纳总结:像2000,500这样的数表示的是存入的钱数;而前面有“—”号的数,像—500,—132这样的数表示的`是支出的钱数。
(3)教师:上述数据中500和—500意义相同吗(500和—500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗说说你是怎么表示的师把学生的表示结果一一板书在黑板上。
2、归纳正数和负数。
(1)你能把黑板上板书的这些数进行分类吗小组讨论交流。
(2)教师展示分类的结果,适时讲解。像+8,+4,+2000,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像—8,—4,—500,—20这样的数,我
们把它叫做负数。
(3)那么0应该归为哪一类呢组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”
归纳:0既不是正数也不是负数,它是正数和负数的分界点。
(4)你在什么地方见过负数教师鼓励学生注意联系实际举出更多的例子。
课堂作业
完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:
4 +41 51负数有:—7?
3、正数有:+
课堂小结
通过这节课的学习,你有什么收获
课后作业
完成练习册中本课时的练习。
第2课时负数的初步认识
(2)正数:+8负数:—8
+4 —4 +2000 —2000 +500 —500 +100 —100 +20 —20
0既不是正数也不是负数。
教学目标
1、在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题。
3、能借助数轴初步理解正数、0和负数之间的关系。
重点难点
负数的意义和数轴的意义及画法。
教学指导
1、通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的`认识,感受数学在实际生活中的广泛应用。
2、把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。
3、培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
课时安排
共分3课时
教学内容
负数的初步认识
(1)(教材第2页例1)。
教学目标
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
重点难点体会负数的重要性。
教学准备多媒体课件。
情景导入
1、教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)
2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)
3、引出课题并板书:负数的初步认识
(1) 新课讲授教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。
课堂作业
完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。
答案:—18℃温度低。
课堂小结
通过这节课的学习,你有什么收获
课后作业
完成练习册中本课时的练习。