作为一名辛苦耕耘的教育工作者,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么优秀的教案是什么样的呢?的小编精心为您带来了六年级下册数学教案(优秀8篇),在大家参照的同时,也可以分享一下给您最好的朋友。
教学目标:
1、学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。
2、经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。
3、学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。
重点、难点:
1、教学重点:理解、掌握杠杆平衡的规律。
2、教学难点:让学生综合应用所学的知识和方法解决实际问题。
教学准备:
竹竿,棋子,塑料袋(多媒体课件)
教学过程
一、准备材料,导入活动:
1、检查课前布置的制作工具(简单杠杆)的作业。
学生对照制作要求,自查和同组互相检查。
小黑板或媒体出示制作要求:
(1)准备的竹竿长1m,尽量做到粗细均匀。
(2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。
(3)从中点处每隔8cm做一个刻度记号,尽量等距离。
拿出准备好的棋子和塑料袋。检查大小是否一样。
2、揭示课题:有趣的平衡(板书)
二、动手实践,探索规律
1、活动一:探索特殊条件下竹竿保持平衡的规律:
(1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?
①学生思考,回答问题。“两边所放的棋子要同样多。”
②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。
(2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?
①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”
②演示。如:
左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。
(3)小结:
你有什么体会?
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
2、活动二:探索在一般条件下竹竿保持平衡的规律(A)
(1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?
①也放4个棋子行不行?会产生什么结果?
②应该放几个?
“放3个。”
(2)如果左边的塑料袋在刻度6上放1个棋子。
①右边的塑料袋在刻度3上放几个呢?
学生交流,各自说出自己的见解。
②右边的塑料袋在刻度2上呢?
学生不难得出结果,放3个。
③右边的塑料袋在刻度1上呢?
学生不难得出结果,放6个。
(3)小结:
师:你有什么体会?
左右两边棋子个数与刻度数的积要相等。
3、活动三:探索在一般条件下竹竿保持平衡的规律(B):
(1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?
(2)实验活动:
①学生动手进行实验活动。
②将实验结果记录下来。
③教师提供表格,引导学生展开活动。
右刻度
所放棋子数
乘积
(3)汇报结果。
学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
(4)从表中你发现刻度数和所放棋子数成什么比例?
学生观察表中两个量的变化情况,不难发现这两种量成反比例
三、应用规律,体会揣摩
1、基本练习:
母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?
提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是x分米。可以得到方程
60x=12×15
解方程得x=3
答:她坐的地方距支点3分米才能保持平衡。
2、综合练习:
桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?
提示:(1)根据臂长和质量成反比例
(2)先确定每个托盘中所放砝码的总质量,在确定臂长。
四、回顾整理,反思提升
1、谈收获。
师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?
2、评价。
师:你对自己这节课的表现满意吗?
可采取学生自评,互评,老师评价的方式进行。
板书设计:
有趣的平衡
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
作业设计
基础:
1、用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?
综合:
2、有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?
提示:
(1)可以像例题中一样,用列表的方法做。
(2)根据臂长与质量成反比,列方程求解。
教学内容:比例的意义
教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:比例的意义。
教学难点:找出相等的比组成比例。
教学过程:
一、旧知铺垫
什么是比?什么叫比值?怎样求比值?
2.求下面各比的比值。
12:16
3/4:1/8
4.5:2.7
二、探索新知
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)这几面国旗的形状一样,但长和宽却各不相同。请大家算一算它们长和宽的比,看看能发现什么?
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=3/2
操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
学生回答长、宽比值。
2.4:1.6=3/2
两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成:2.4/1.6.=60/40
(4)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成等式?
如:5:10/3=15:10
5:10/3=2.4:1.6
15?10=2.4/1.6
15/10=60/40
(5)什么是比例?
表示两个比相等的式子叫做比例。
(6)1:2是是比例吗?你能把它组成一个比例吗?
(7)完成教材“做一做”。
第1题。
什么样的比可以组成比例?
把组成的比例写出来。
说一说你是怎么找的。
同学之间互相交流,检验各自所写的比例。
第2题。
学生独立写比例,看谁写得多。
同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
三、巩固练习
完成课文练习六第1~3题。
第一课时教学反思
复习环节发现部分学生对求比值出现知识遗忘。特别是对于如何求两个小数或两个分数的比值,而这部分知识是本课判断能否组成比例的关键,所以在复习中必须舍得花时间,夯实基础后才能继续推进新授学习。
在总结比例概念的时机上,我对教材稍做修改。因为仅从一个例子就要求学生概括出比例的含义,对他们而言难度较大。因此,我在教学完2.4:16.=60:40后,请学生们把四面国旗长和宽的比,也根据比值相等的组成等式。在此基础上再提问“怎样的式子叫做比例?”明显感觉学生们能够根据实践经验较准确地抽象出概念。同时,建议在巩固练习中补充概念的判断题,如:6:10和9:15,(虽然两个比的比值相等,但因为没有组成式子,所以不是比例。)
做一做第2题隐含着初中相似三角形对应边成比例的性质,教参给出了4个比例,“2∶4 = 1.5∶3、4∶2 = 3∶1.5、2∶1.5 = 4∶3、1.5∶2 = 3∶4。”其实应该共可写出8个比例。交换等号两边的比,还可以组成4个不同的比例1.5:3=2:4、3:1.5=4:2、4:3=2:1.5、 3:4=1.5:2。为什么仅仅相换了等号两边的比,就应该算作不同的比例呢?(必须结合比例各部分的名称来解释)怎样才能将4个数,既不重复又不遗漏地写出8个比例来呢?(我觉得在学习完比例的基本性质后更容易理解)。因此,将此题下移至比例的基本性质一课完成。
练习六第1题必须特别关注,因为其中第2、4小题体现了正比例的特点。因此,在教学中,我不仅要求学生判断“相对应的两个量的比能否组成比例”,还补充要求他们回答相应两个量的比值表示的含义。如第2小题,有的学生用箱子数量:质量,那么比值的含义应该为每千克的箱子是多少个。也有的学生用质量:箱子数量,那么比值的含义则为每个条子的质量。通过练习,强化数量关系,为后继学习作好铺垫。
练习六第2题,如果将4个数两两排列求比值,有12种情况,再从中找出比值相等的组成比例太麻烦,有没有比较方便快捷的方法呢?有!孩子们发现:将的数与第二大的数组成比;将剩下的两个数也按大数比小数组成比,就能够较快判断出所组成的比能否组成比例。
教学目标:
通过例1的复习使学生进一步加深对求平均数问题中数量关系的理解及怎样求出总数等内容和理解。
通过例2的复习进一步掌握求稍复杂的平均数问题的方法。
通过复习使学生进一步学会整理数据、编制统计表,并能应用原始数据和表格计算有关的问题。
教学过程:
复均数。
出示例1
问:要求七个班的平均人数,该怎样算?让学生自己算出结果。
想一想:如果已知七个班的平均人数,求这七个班的总人数,该怎样算?让学生自己解答。
通过计算让学生总结出求平均数问题的计算方法。
出示例2
学生想:要求五年级平均每人做多少个,必须先求出( )和( )
让学生自己列式解答。
让学生总结求较复杂平均数问题的计算方法。
完成137页的“做一做”
复习统计表
出示137页的例题。
让学生把计算结果填入表中的空格,再验算合计数和总计数,看看计算的结果对不对。
完成138页的“做一做”
第二课时
复习统计图
教学目标:
通过复习让学生归纳整理折线统计图、条形统计图和扇区形统计图的特点和作用。进一步加深理解它们各自的特点,初步了解在什么情况下用什么统计图反映情况较为合适。
教学过程:
复习
回答
你学过哪几种统计图?
出示某电子仪器一厂和二厂在三个方面的统计图。
回答四个问题
从折线统计图中可以看出,哪个厂的产值增长和快?
从条形统计图中可以看出,哪个厂的工人人数多?哪个厂的技术人员多?
从扇形统计图中可以看出,哪个厂的外销产品占销售总数的百分比大?
综合上面的分析,你认为哪个厂的生产搞得好?为什么?
引导学生把三种统计图的特点和作用进行概括和总结。
让学生看书或出示140页三种统计图的特点和作用表。
教学内容:
课本第59——60页的内容“统计图的选择“。
教学目标:
1、能读懂条形统计图、折线统计图和扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。
2、了解三种统计图的不同特点,能根据需要选择适当的统计图,直观有效地表示数据。
教学重点:
了解三种统计图的不同特点
教学难点:
能针对具体情况正确选择合适的统计图。
教具准备:
课件
教学过程:
一、复习、谈话导入
说出条形统计图、折线统计图和扇形统计图的各自特点。
二、看图分析,回答问题
1、电脑课件呈现下面三幅统计图。
获得信息 ,学生回答
条形:表示数量的多少
折线:表示数量的增减变化
扇形:部分与整体的关系
学生看书
试说,讨论
汇报:从条形统计图中很直接看出29届获得的奖牌最多;从折线统计图中看出金牌数的变化;扇形统计图能看出29届我国奖牌的分布情况。
学生互相说说特点
第(1)小题,表示各种数量占总量的百分之几,应该选择扇形统计图;
第(2)小题,表示各种数量的多少,应该选择条形统计图;
第(3)小题,表示身高的变化情况,应该选择折线统汁图。
奥运会
折线统计图:数量的多少
条形统计图:数量的变化
扇形统计图:部分与整体的关系
第(1)小题,表示各种数量占总量的百分之几,应该选择扇形统计图;
第(2)小题,表示各种数量的多少,应该选择条形统计图;
第(3)小题,表示身高的变化情况,应该选择折线统汁图。
三、巩固升华
完成课后的“练一练”。
四、全课小结
说一说三种统计图的特点和作用
板书设计:
奥运会
折线统计图:数量的多少
条形统计图:数量的变化
扇形统计图:部分与整体的关系
课后反思:
教学目标:
1、使学生进一步掌握扇形统计图的特征和作用,能正确描述扇形统计图所反映的有关数据。
2、使学生能正确运用扇形统计图反映有关数据,提高处理数据的技能,发展学生的应用意识和实践能力。
3、初步形成评价与反思的意识。
重点:扇形统计图。
难点:发现统计图中存在的数据不清的问题。
教学过程:
一、设疑自探:
呈现扇形统计图
某校学生最喜欢的文艺节目情况统计图
1、问:从图中你能了解到哪些信息?
(1)喜欢同一首歌的人数占调查人数的45%
喜欢相声的人数占调查人数的18%
喜欢小品的人数占调查人数的25%
喜欢其他文艺节目的人数占调查人数的12%
(2)喜欢同一首歌的人数最多
绝大部分同学都喜欢同一首歌,小品和相声
喜欢其他文艺节目的人数最少
2、说一说这是什么统计图,它有什么特征?
(1)扇形统计图
(2)特征:可以清楚地反映出各部分量占总量的百分之几
二、解疑合探:
教学例
1出示课文例题统计图
下面是一幅彩电市场各部分品牌占有率的统计图
(1)从图中你了解到哪些信息?
A、牌彩电占市场销售量的20%
B、牌彩电占市场销售量的15%
C、牌彩电占市场销售量的10%
D、牌彩电占市场销售量的8%
其他品牌彩电占市场销售量的47%
(2)有人认为A牌彩电最畅销,你同意他的观点吗?
①学生独立思考,分析题中的数量
②小组交流,学生在小组中说一说自己的。看法
汇报交流结果
经过讨论,交流,使全体同学懂得:在“其他”里面还可能包含有比A牌更畅销的彩电。所以,从这个统计图不能判断出哪个品牌的彩电最畅销。
(3)建议
上面这幅统计图提供的数据不清,无法全面地反映有关彩电市场各品牌占有率的情况,你有什么修改建议?
①通过交流,使学生懂得:“其他”所占有的份额应该是最小的部分,这样才能全面地反映各个数量占有率的情况,突出扇形统计图的特征和作用。
②建议:在进行数据整理时,将“其他”当中的一些品牌彩电所占份额单单独计算,在统计图中详细标出它的占有率
三、质疑再探:
1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?
2、你还有什么问题,提出来与大家一起讨论解决?
学生提出问题,教师引导学生讨论解决。
四、运用拓展:
1、完成课文练习十一第1题
(1)说一说,你从图中得到哪些信息。
(2)从图中你能判断出喜欢哪种文艺节目的人数最多吗?为什么?
(3)你有什么修改建议?
2、布置作业
一、教学内容:
北师大版六年级数学下册第一单元《圆锥的体积》。
二、教学目标:
1、知识技能目标:
通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。
使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:
使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题
难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:
1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:
(一)创设情境,导入新课
投影出示圆锥形小麦堆。
师:看,小麦堆得像小山一样,小麦丰收了。张小虎和爷爷笑得合不拢嘴。这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?
这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。
【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。
(二)互动新授
1、提出问题。
教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?
根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?
进一步观察、比较、猜测。教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?
学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。
2、实验探究。
(1)教师布置实验任务。
出示教材例2.
① 从准备好的圆柱、圆锥体容器中找出等底、等高的圆柱和圆锥体容器来。
② 用倒水的方法量一量等底、等高的圆柱体积和圆锥体积之间的关系。
布置实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,做好实验数据的收集整理。(每组发一张实验记录单)
一号圆锥 二号圆锥 三号圆锥
次数
与圆柱是否等底、等高
(2)开展实验探究。
① 找出等底、等高的圆柱和圆锥形容器。
② 实验研究。
教师巡视指导。
学生一边实验,一边收集整理数据,完成实验记录单。
(3)分析数据,作出判断。
① 各组说说各种实验结果。
② 观察分析数据,你发现了什么?
(发现大多数情况下,圆柱能装下三个圆锥的水,也有两次或四次等不同的结果)
③ 进一步观察分析,什么情况下圆柱刚好能装下三个圆锥的水?
(各组互相观察各组的圆柱圆锥,发现只要是等底等高,圆柱的体积都是圆锥体积的3倍,也就是说在等底等高的情况下,圆柱体积是圆锥体积的3倍。)
④ 是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(教师用标准教具装水实验一次)
(4)总结结论
结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。
结论2: 圆柱的体积V等于和它等底等高的圆锥体积的3倍。
3、启发引导 推导公式
师:对于同学们得出的结论,你能否用数学公式来表示呢?
生:因为圆柱的体积计算公式V=sh;所以我们可以用1/3 sh表示圆锥的体积。
师:其他同学呢?你们认为这个同学的方法可以吗?
生:可以。
师:那我们就用1/3 sh表示圆锥的体积。
计算公式:V= 1/3 sh
师: (1)这里Sh表示什么?为什么要乘1/3?
(2)要求圆锥体积需要知道哪两个条件?
学生回答,师做总结
4、简单应用 尝试解答
例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?
(学生独立列式计算全班交流)
(三)巩固练习,运用拓展
1、试一试
一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?
2、练一练
计算下面各圆锥的体积:
3、实践性练习
师:请你们将做实验时装在圆柱容器里的水换成沙(或米)试一试,看结论是否一样。然后把它倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。
4、开放性练习
一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)
(四)整理归纳,回顾体验
1、上了这些课,你有什么收获?(互说中系统整理)
2、用什么方法获取的?你认为哪组表现最棒?
3、通过这节课的学习,你有什么新的想法?还有什么问题?
【设计意图】通过组织学生对圆锥体积计算方法进行猜测、验证、交流,从而发现圆锥体积的计算方法。整个探究过程充分体现了学生的主体地位,调动了学生的学习积极性。在解决问题的过程中感受到数学知识的价值。
六、板书设计:
圆锥的体积
圆锥的体积等于和它等底等高的圆柱体积的1/3。
第二课时
教学目标:
1、理解比例的意义。
2、能根据比例的意义,正确判断两个比能否组成比例。
3、在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。
重点难点:
1、理解比例的意义,能正确判断两个比能否组成比例
2、在学生观察、操作、推理和交流的过程中,发展学生的探究能力和精神
教学过程:
一、复习导入
1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?
2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。
二、教学比例的意义
1、认识比例
(1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。
(2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)
(3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的'式子,如:6.4:4=9.6:6。或6.4/4=9.6/6
数学中规定,像这样的式子就叫做比例。(板书:比例)
(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)
(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
(一)复习导入
1、昨天学习了图形的放大和缩小?放大或缩小后的图形与原来的图形有什么关系?
2、关于比你有哪些了解?(生答:比的意义、各部分名称、基本性质等。)
还记得怎样求比值吗?希望这些知识能对你们今天学习的新知识有帮助。
(二)教学比例的意义
1、认识比例
(1)呈现放大请后的两张长方形照片及相关的数据。要求学生分别写出每张照片长和宽的比。
(2)比较写出的两个比,说说这两个比有什么关系?你是怎样发现的?(求比值,或把它们分别化成最简比)
(3)是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:6.4:4=9.6:6。或6.4/4=9.6/6
数学中规定,像这样的式子就叫做比例。(板书:比例)
(4)你能说说什么叫比例吗?(让学生充分发表意见,在此基础上概括出比例的意义)
(5)学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。
教学目标
1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;
2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;
3、培养学生分析和解决实际问题的能力,发展学生的思维;
4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。
教学关键培养学生分析和解决实际问题的能力
教学重点复习分数乘除法应用题,掌握解题方法。
教学难点找准单位“1”
教学步骤 教学过程 教学课件演示 教学意图
一、基础训练导入。
师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?
专项训练:
课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。
在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?
我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?
常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。
二、根据看线段图列式
师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】
注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。
三、基础练习
基础练习只列式不计算
师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?
归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。
尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?
【教学课件演示】
培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。
四、对比练习
1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。
通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。