六年级下册数学教案(8篇)

作为一位无私奉献的人民教师,通常需要用到教案来辅助教学,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?这次漂亮的小编为您带来了六年级下册数学教案(8篇),希望能够给予您一些参考与帮助。

人教版六年级数学下册教案 篇1

一、教学目标

(一)知识与技能:使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。

(二)过程与方法:

1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。

2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数学的积极性。

(三)情感态度和价值观:进一步培养学生主动探索精神,发展学生的空间观念,提高学生的。学习兴趣。

二、教学重难点

教学重点:掌握圆柱的基本特征。

教学难点:高的认识。

三、教学准备

教师:课件,长方体模型,圆柱模型。

学生:每生自带一个圆柱形物体,草稿纸。

四、教学过程

(一)复习旧知,引出课题

1.师:同学们,我们学过哪些立体图形?它们各有几个面?这些面是什么形状?生回答。(根据学生回答板书研究方法)动手操作:画、剪、比、量。

2.(课件出示)师:那下面的这些物体你认识吗?它们是什么形状?如果把这些物体的形状画下来会是什么样子的呢?课件演示:从实物图抽象出圆柱图形。

3.小结:上面这些物体的形状都是圆柱体。揭题:今天我们要一起来研究圆柱。(板书课题)

(二)自主学习

学生仔细观察手中的圆柱模型,边看书边思考:

①圆柱的上、下两个面叫做什么?

②用手摸一摸圆柱周围的面,你发现什么?

③圆柱一共有几个面?是哪几个面?

④圆柱两个底面之间的距离叫做什么?在哪里?

及时练习(课件出示):让学生根据圆柱的特点判断下面的图形。

【设计意图】学生通过看一看,摸一摸,找一找,初步了解圆柱的特征,为后面突破难点打下基础。

人教版六年级下册数学全册教案最新文案 篇2

教学目标

1、使学生理解按比例分配问题的意义。

2、使学生掌握按比例分配应用题的结构及解答方法。

3、掌握解题关键:根据比算出总份数及各部分量占总数量的几分之几。

教学重点和难点

1、理解按比例分配问题的意义。

2、掌握怎样根据比算出总份数及各部分量占总数量的几分之几的解题方法。

教学过程设计

(一)复习准备

1、复习比的有关知识,为学习新知识做准备。

已知六年级1班男生人数和女生人数的比是3∶4。

男生人数与全班人数的比是∶。

女生人数与全班人数的比是∶。

2、创设情境,提出课题。

(1)妈妈有10块糖,平均分给哥哥和弟弟。每人可以得到几块糖?(每人可分到5块糖。)

提问:妈妈是怎样分的?(平均分)

(2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2。)

提问:这样分还是平均分吗?

日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题。

(二)学习新课

1、讲解例2。

例2  一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2。两种作物各播种多少公顷?

人教版六年级数学下册教案 篇3

教学目标:

1、巩固对储蓄存款的认识,了解教育储蓄、国债利率

2、在自主活动中进一步熟悉掌握存款利息计算方法

3、培养学生认识到存款利国利民

教学重点:

掌握有关存款形式、利息的计算方法

教学难点:

运用有关知识解决实际问题

教学过程:

一、明确问题

李阿姨要存2万元,供儿子六年后上大学,怎样存款收益最大?

三种理财方式:普通储蓄存款、教育储蓄、购买国债

二、交流汇报有关利率、教育储蓄、国债相关小知识

1、学生汇报自己收集到的相关知识

2、教师释疑

A、收集到的利率为什么与教材上的。不同?

B、不同银行存款利率不一样

C、国家利率调整的原因

D、教育储蓄存款存期的计算

三、设计方案

根据利息=本金x利率x存期计算每种方案最后利息

1、学生分组讨论交流,设计不同方案

2、教师巡回指导,选择代表性方案演板

方案一:一年期存6次利息:3880。95元

方案二:二年期存3次利息:4845。9元

方案三:三年期存2次利息:5425。13元

方案四:先存五年期一次,再存一年期一次利息:5492。5元

教育储蓄:五年按六年计算利息:5700元

购买国债:六年利息:6384元

四、讨论:选择方案,比较利弊

根据各种实际情况,灵活选择

五、当堂检测

六、活动总结

七、谈谈本节课的收获与困惑

六年级下册数学教案 篇4

一、学习目标

(一)学习内容

《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。

(二)核心能力

经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(三)学习目标

1、理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

2、通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(四)学习重点

了解简单的鸽巢问题,理解“总有”和“至少”的含义。

(五)学习难点

运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1、谈话导入

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。

师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

2、问题探究

(1)呈现问题,引出探究

出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。

师:“总有”是什么意思?“至少”有2支是什么意思?

学生自由发言。

预设:一定有

不少于两只,可能是2支,也可能是多于2支。

就是不能少于2支。

(2)体验探究,建立模型

师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?

小组活动:学生思考,摆放。

①枚举法

师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。

预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。

师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?

(不一定,也可能放在其它笔筒里。)

师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?

预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。

师:这种放法可以记作(3,1,0)

师:这3支铅笔一定要放在第一个笔筒里吗?

(不一定)

师:但是不管怎么放——总有一个笔筒里放进3支铅笔。

预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。

师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?

预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。

预设4:还可以(2,1,1)

或者(1,1,2)、(1,2,1)

师:还有其它的放法吗?

(没有了)

师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)

师:这几种放法如果用一句话概括可以怎样说?

(装得最多的笔筒里至少装2支。)

师:装得最多的那个笔筒一定是第一个笔筒吗?

(不一定,哪个笔筒都有可能。)

【设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】

②假设法

师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?

预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。

师:“平均放”是什么意思?

预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。

师:为什么要先平均分?

学生自由发言。

引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。

师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。

【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】

(3)提升思维,建立模型

①加深感悟

师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。

预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:把7支笔放进6个笔筒里呢?还用摆吗?

学生自由发言。

师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?

师:你发现了什么?

预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:你的发现和他一样吗?

学生自由发言。

师:你们太了不起了!

师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?

练一练:

师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”

师:说说你的想法。

师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】

介绍狄利克雷:

师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。

②建立模型

出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?

学生独立思考、讨论后汇报:

师:怎样用算式表示我们的想法呢?生答,板书如下。

7÷3=2本……1本(2+1=3)

师:如果有10本书会怎么样能?会用算式表示吗?写下来。

出示:

把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

10÷3=3本……1本(3+1=4)

师:观察板书你有什么发现?

预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。

师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。

学生讨论,汇报:

8÷3=2……22+1=3

8÷3=2……22+2=4

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?

预设:我认为根“商”有关,只要用“商+1”就可以得到。

师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。

引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。

鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。

【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】

3、巩固练习

(1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。

(2)第69页的做一做第1、2题。

4、全课总结

师:通过这节的学习,你有什么收获?

小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。

(三)课时作业

1、一个小组共有13名同学,其中至少有几名同学同一个月出生?

答案:2名。

解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】

2、希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

答案:8名。

解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】

人教版六年级下册数学全册教案最新文案 篇5

教学目标

1、进一步加深对分数乘、除法应用题的数量关系和内在联系的认识。明确它们的相同点和不同点。

2、掌握分数乘、除法应用题的分析、解答方法。

教学重点

训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点。

教学难点

准确判断单位“1”,正确地解答分数应用题。

教学步骤

一、铺垫孕伏

(一)导入 :我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

(二)判断单位“1”。

1、鹅的只数是鸭的 。

2、甲的 是乙。

3、乙是甲的 。

4、男生人数的 相当于女生。

5、小齿轮的齿数占大齿轮的 。

(三)列式计算。

1.4是12的几分之几?

2.12的 是多少?

3、一个数的 是4,求这个数。

二、探究新知

(一)教学例3第(1)题

池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

1、读题并找出已知条件和问题

2、提问:应把谁看作单位“1”?是根据题中哪句话判断的?

3、画图。

4、列式解答

答:鹅的只数是鸭的 。

(二)教学例3第(2)、(3)题。

池塘里有12只鸭,鹅的只数是鸭的 。池塘里有多少只鹅?

池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?

1、画图理解题意

2、列式解答

3、集体订正

(三)小结

这三道题有什么相同点和不同点?解题关键是什么?

1、结构上

相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

不同点:已知和未知不一样。

2、解题思路上

相同点:都要首先弄清谁作标准,把谁看作单位“1”;

不同点:根据已知、未知的变化,确定不同的解答方法。

解题关键是:正确分析题中的数量关系,明确谁作单位“1”。

教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别。我们在解

答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位“1”。这样才能提高解答分数应用题的能力。

三、全课小结

这节课我们进一步学习了分数乘、除法应用题,并进行了比较。解答时,要正确地判断单位“1”,从而确定解答方法。

四、巩固练习

(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 。商店运来蓝毛衣多少包?

(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 。商店运来红毛衣多少包?

五、课后作业

(一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

(二)学校买了蓝墨水30瓶,红墨水24瓶。蓝墨水是红墨水的几倍?

(三)农场有小牛40头,是大牛头数的 。农场有大牛多少头?

六、板书设计

1、池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

4÷12=

答:鹅的只数是鸭的 。

2、池塘里有12只鸭,鹅的只数是鸭的 。池塘里有多少只鹅?

12× =4(只)

答:池塘里有4只鹅。

3、池塘里有4只鹅,正好是鸭的只数的 。池塘里有多少只鸭?

4÷ =12(只)

答:池塘里有12只鸭。

人教版六年级下册数学教案 篇6

课前准备

教师准备PPT课件

教学过程

⊙谈话揭题

上节课,我们从意义、读法、写法、大小比较、改写以及省略尾数保留近似数等几个方面复习了整数的相关知识,这节课我们按类似的思路来复习小数的相关知识。(板书课题:小数的认识)

⊙回顾与整理

1.小数的意义。

过渡:同学们,在生活中我们常常遇到不能用整数表示物体个数的时候,例如:我吃了半个苹果,做一件上衣要用一米半的布料……提问:半个、一米半怎样来表示呢?谁来说说小数的意义?

预设

生1:半个可以用0.5来表示,一米半可以用1.5来表示。

生2:把整数“1”平均分成10份、100份、1000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。

2.小数的数位顺序表。

师:小数的数位顺序表是怎样的?谁能把整数、小数的数位顺序表补充完整?

(课件出示数位顺序表,小数部分留白。指名回答,师填充)

3、小数的读法和写法。

(1)师:怎样读小数?怎样写小数?

预设

生1:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。

生2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。

(2)写小数时需要注意什么?

(空位用“0”补足)

4.小数的分类。

(1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?

预设

生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。

(2)谁能举例说明什么是有限小数?什么是无限小数?

预设

生1:小数部分的位数是有限的小数,叫做有限小数。例如:21.7,35.3,0.13都是有限小数。

生2:小数部分的位数是无限的小数,叫做无限小数。例如:8.33…,3.1415926…都是无限小数。

(3)无限小数还可以再细分吗?如果细分,那么可以分成哪几类?

预设

生:无限小数可以分为无限不循环小数和循环小数。

(4)关于无限不循环小数和循环小数,你都了解哪些知识?

预设

生1:一个数的小数部分,数字排列没有规律且位数无限,这样的小数叫做无限不循环小数。例如:π

生2:一个数的小数部分从某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:2.555… 0.0333… 17.109109…

生3:一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99…的循环节是“9”,0.5454…的循环节是“54”。

5.小数的性质。

(1)师:谁能说说小数有怎样的性质?

预设

生:在小数的末尾添上0或者去掉0,小数的大小不变。

(2)理解小数的性质时,应该注意什么?

(提示:要注意是“小数的末尾”,而不是“小数点的后面”)

6.小数点位置的变化。

人教版六年级数学下册教案 篇7

教学内容:

教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

教学目标:

1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

重点难点:

掌握圆柱体积公式的推导过程。

教学资源:

PPT课件 圆柱等分模型

教学过程:

一、联系旧知,设疑激趣,导入新课。

1.呈现例4中长方体、正方体和圆柱的直观图。

2.提问:这几种立体的`体积你都会求吗?你会求其中哪些立体的体积?

启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

二、动手操作,探索新知,教学例4

1.观察比较

引导学生观察例4的三个立体,提问

⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

⑵长方体和正方体的体积一定相等吗?为什么?

⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

2.实验操作

⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

操作教具,让学生观察。

引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

3.推出公式

⑴提问:拼成的长方体与原来的圆柱有什么关系?

指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

⑵想一想:怎样求圆柱的体积?为什么?

根据学生的回答小结并板书圆柱的体积公式

圆柱的体积=底面积高

⑶引导用字母公式表示圆柱的体积公式:V=sh

长方体的体积 = 底面积 高

圆柱的体积 = 底面积 高

用字母表示计算公式V= sh

三、分层练习,发散思维,教学试一试

⑴让学生列式解答后交流算法。

⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

(s和h,r和h,d和h,c和h)

四、巩固拓展练习

1.做练一练第1题。

⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

⑵各自练习,并指名板演。

⑶对照板演,说说计算过程。

2.做练一练第2题。

已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

五、小结

这节课我们学习了什么?有哪些收获?还有什么疑问?

六、作业

练习三第1~3题。

人教版六年级下册数学教案 篇8

一、游戏导入

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

负号能不能省略不写?为什么?

② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

一键复制全文保存为WORD
相关文章