六年级数学上册教案(最新6篇)

作为一位无私奉献的人民教师,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。怎样写教案才更能起到其作用呢?以下是人见人爱的小编分享的六年级数学上册教案(最新6篇),如果能帮助到您,小编的一切努力都是值得的。

苏教版六年级数学上册教案 篇1

教学目标

1.理解一个数乘以分数的意义,明白分数乘以分数的算理,掌握计算法则。

2.能正确地进行分数乘以分数的计算。

3.通过学生全面参与教学过程,培养学生迁移、观察、分析、概括的能力。

教学重点

理解意义,掌握法则。

教学难点

推导计算法则。

教学过程

(一)复习

2.口算下面各题,并说出算式的意义。

(二)导入新课

通过分数乘以整数意义的学习,使我们看到知识之间是有联系的,而且新知识都是在旧知识基础上发展的。今天我们继续研究一个数乘以分数的意义和计算方法。(板书课题)

(三)讲授新课

1.教师逐次出示投影片,引导学生认真观察,正确列出算式,说出算式的意义。

投影:

的3倍是多少。)(板书)

投影:

一半。)

其中的一份。)

师:结合题说一说,把谁平均分成2份,取其中1份?(把一瓶桔汁平均分成2份,取1份。)

少。)(板书)

投影:

先观察图,然后列式,结合图说出算式意义。(小组讨论)

汇报讨论结果,并板书。

(3)不出示投影图,你自己还想知道多少瓶的重量呀?

分别列式,说意义。

列式?算式的意义是什么?

(5)观察概括:观察(2)、(3)、(4)几题的列式,乘数是什么数?(分数)(板书)被乘数是什么数?(分数、小数、整数)我们统一叫做一个数。(板书:一个数)

论)

汇报讨论结果,并板书:

一个数乘以分数的意义就是求这个数的几分之几是多少?

(6)练习:说说算式意义。

2.推导法则。

我们已经学习了一个数乘以分数的意义,那么一个数乘以分数应该怎样计算呢?

耕地多少公顷?

(把一公顷平均分成2份,取其中一份,是1小时耕的。)

拿出发的纸,说明:这张纸表示1公顷,你能折出一小时耕的公顷数吗?并用红斜线表示出来。(把结果贴在黑板上)

①再贴出一张折叠后的结果。

这1份占1公顷的几分之几?怎样理解?(把1公顷平均分成(25)份,取其中1份,边说边用虚线延长5等分的线。)

论,后订正,板书)

分数有什么关系?(原式两分数的分母相乘。)

并计算出结果。

汇报、订正并板书。

贴出在折纸上表示的结果。

观察:原式和结果分子、分母有什么关系?概括分数乘以分数的计算法则。(讨论、订正)

(分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。)

练一练

投影订正三种做法:

比较哪种方法对?哪种方法好?注意:先约分再乘。(板书)

(四)巩固练习

(做本上或投影片上)

1.计算例2中算式的结果。

投影反馈时,强调先约分。

3.第7页,第1题,看图填空。(做书上)

4.先说过程,再说结果:

5.第7页,第4题,列式计算。

6.判断:

(五)课堂总结

这节课我们学了哪些知识?意义是什么?法则是什么?应注意什么?

课堂教学设计说明

这节课是本单元的教学重点,因此,在教学设计上切忌结论式的教学,充分利用这节课的内容,发散学生的思维,提高学生各种能力。教案设计重视学生全面参与教学过程,如在教师的指导下,让学生积极主动地探索意义;用动手折叠、画,讨论等形式推导法则。使学生加深理解。教案中注意扶放结合,如例3第一问,是老师帮助学生学习,掌握分析思路,而第二问则是放开让学生依照第一题的解题思路学生自己列式、画图、说意义、推算结果。总结意义和法则的结论时,都是由感性认识到理性认识,使学生自己得出结论。

苏教版六年级数学上册教案 篇2

1、目标的定位

目标是教学的灵魂,是一切教学活动的出发点和归宿点,支配着教学的全过程,并规定着教与学的方向。准确把握教学目标是实现有效教学的前提与关键。在课堂设计时,我们应全面了解学生已有的知识经验以及对新知识掌握的情况等,准确把握教学的起点,制定切合学生实际的教学目标。

《比例尺》这课内容是在学生学习了比的知识、正反比例和图形的放缩的基础上学习的。是比的知识、正比例和乘除法意义的综合应用。依据教材和学生已有知识及年龄特点等来重新审视《比例尺》一课,我们不难发现,这部分内容不仅要使学生理解比例尺的意义、掌握求比例尺的方法,对数值比例尺与线段比例尺能进行转化,培养学生的读图、用图、绘图的能力,并发展学生的空间观念,更重要的是通过教学使学生认识到所学知识的价值所在。

值得关注的是:就数值比例尺而言,教材没有就方法比例尺专门的讲解,但是现实生活中有很多这样的例子,就是要学生在理解比的基础上“从不同角度去理解比例尺”,所以我把本节课的重点放在“理解比例尺的含义”上,其次才是计算比例尺,有了深刻的理解,计算自然水到渠成。这样来把握教材,教学起来得心应手,收到良好的效果。

2、创造性地使用教材

《比例尺》这一部分内容对学生来说比较陌生、抽象,难于理解,而且我觉得书中的练习和情境可能不太适合我们的学生,学生不一定会十分感兴趣,可能只是为了解题而解题。因此我仔细分析了教材的设计意图,同时又思考如何将这样一节概念教学恰到好处的与学生的生活实际联系起来。结合人教版教材,我对教材进行了取舍,创设了贴近我所教学生生活实际的题目,考虑线段比例尺和放大比例尺在实际生活中应用很广,因些我在把握教材的基础上,还把比例尺的相关内容拓展进来,从而拓宽和活化教材内容,增强学生对学习内容的亲切感,激发学生的求知欲。

一上课,我首先设计了一个脑筋急转弯题:“老师开车从濮阳到郑州用3个小时,可是有一只蚂蚁却只用5分钟就从濮阳爬到郑州,这是为什么?”,这里创设了情境,激发学生的学习兴趣,然后出示中国地图,让学生从地图中找出濮阳和郑州。接着,引导学生带着老师提出的三个问题进行自学:

1、什么叫比例尺?

2、怎样求比例尺?

3、求比例尺时应注意哪些问题?

这样,培养学生尝试学习和独立思考的能力。只要学生解决好这三个问题,本课的重难点也就解决了。最后提问:学习了比例尺,对我们有什么用处?使学生对今天所学知识有更深入地了解,并引出用比例尺解决问题。

这样,把问题情境与学生的生活紧密联系起来,不仅有利于学生理解问题情境中的数学问题,而且有利于学生体验到生活中的数学是无处不在的,培养学生的观察能力和初步解决实际问题的能力。

3、教学中的不足

在实际教学的过程,孩子们的热情似乎也挺高,反应也不错。像比例尺的概念挺好理解,把线段比例尺改写成数值比例尺也进行了板书,以及必要的练习。自以为这节课的内容也没有什么较大的难度,学生应该都能够接受。可反映到作业本上就不是那么回事了,求比例尺,应该是图上距离比实际距离,有变成实际距离比图上距离的。比例尺互化的格式有几个是创新的,可似乎这几种创新写法不是那么正确。为什么?把孩子叫到身边,我问他们:“我在板书的时候,你们仔细看了吗?”都齐刷刷地回答我看了。“看了怎么连写法都乱七八糟的。”孩子们个个无语,一个个冤枉的样子。

后来我冷静地想了想,可能是以下几个原因:首先对比例尺的接触较少,缩小的比例尺可能看到过,如地图等,放大的比例尺就比较少见。因此,会有一个错误想法,较小的数是图上距离,继而就出现了实际距离比图上距离的情况,其次为了集中孩子们的注意力,我在课堂上会比较注意口头交流,认为懂了可以不写,但实际上说跟写还真的是两回事,会说不一定会写。如果我们把图上距离1厘米等于实际距离20千米的线段比例尺改写成数值比例尺,会说20千米等于2000000厘米,因此写成数值比例尺是1:2000000。这样,学生在写的时候会觉得怎么写好呢?尽管有板书,但那也是走马观花,没有起到实质性的作用。看来以后在课堂上必要的写还真不能省。

苏教版六年级数学上册教案 篇3

第一单元 方 程

教学内容:P7“回顾与整理”、“练习与应用”第1—4题

教学目标:

1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。

2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。

教学资源:小黑板

教学过程:

一、揭示课题

本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。

二、回顾与整理

1、出示小组讨论题:

(1)像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解?

(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。

2、让学生围绕这两个问题进行独立思考。

3、把各自思考的情况在小小组内进行交流。

4、全班交流。

讨论题(1) 可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。 讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。

三、练习与应用

1、解方程

180+6x=330 27x+31x=145 x-0.8x=10

2.2x-1=10 15x÷2=60 4x+x=3.15

(1)让学生独立完成,指名板演。

(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。

2、解决实际问题

(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。

① 武汉长江大桥铁路桥长多少米?

② 武汉长江大桥公路桥长多少米?

** 让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:

武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度

武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度

** 问:在列方程时应该怎样表示题中的两个未知数量?

(2)练习与应用第3题

** 先让学生看图后说说了解到了哪些信息。

** 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?

** 问:你能说说题中数量之间的相等关系吗?

(学生如有困难,教师可以画线段图帮助学生理清数量关系)

随机板书:

小树原有的高度+6个月长的高度=小树现在的高度

(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?

** 学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。

** 再让学生独立解答,指名板演。

** 交流时让学生结合所列的方程说说自己的思考过程。

三、总结:通过今天的整理与练习,你又有哪些收获?还有什么疑惑?

四、作业: P7“练习与应用”第2、3题。

苏教版六年级数学上册教案 篇4

教学目标

1.使学生熟练地掌握有关数的整除概念,弄清概念间的联系与区别。

2.提高判断能力,能灵活运用概念解决实际问题,使学生进一步认识到概念之间相辅相承相互依存的辩证关系。

教学重点和难点

数的整除概念。数的整除概念间的联系与区别。

教学过程设计

(一)导入

今天我们复习数的整除这一单元的部分知识。(板书:数的整除复习概念)通过这节课复习,我们要准确掌握概念,并理解概念,弄清概念间的内在联系与区别,从而灵活运用知识解决实际问题。

(二)复习过程

1.复习倍数公倍数最小公倍数。

请大家看投影片上的三道算式:

①106=1.6 ②382=19 ③156=2.5

(1)第①和②、③两道算式有什么不同?

(2)②和③相比较又有什么不同?(板书:整除)并追问:什么叫整除?

(3)观察整除式382=19,谁能被谁整除?为什么?

(4)在38能被2整除的前提下,38是2的什么? 2又是38的什么?(板书;倍数、约数)

(5)什么叫倍数?什么叫约数?

(6)倍数、约数能单独存在吗?它依存于哪个概念?

(7)从382=19这个式子中,可以看出38是2的倍数,还能看出38是谁的倍数?那么38可以叫做2和19的什么?(板书:公倍数)

(8)2和19只有38这一个公倍数吗?有多少个?为什么?

(9)既然2和19的公倍数是无限多个,那么有最大的公倍数吗?有最小的吗?是多少?

(板书:最小公倍数)

(10)什么叫公倍数?什么叫最小公倍数?

(11)依据382=19这个等式,谁能用整除、倍数、公倍数、最小公倍数来说明等式中3个数之间的关系?

2.复习约数公约数最大公约数。

(1)我们已经知道38是2的倍数,2是38的约数,除2以外,38还有哪些约数?(板书;1,2,19,38)

(2)2的约数有哪些?19的约数有哪些?

(3)观察38,2,19这三个数的约数,你能指出它们的公约数吗?(板书:公约数)

(4)几个数的公约数的个数是有限的还是无限的?为什么?

(5)38和2的公约数中最大的一个叫38和2的什么?(板书:最大公约数)

(6)38和2的最大公约数是几?38和19的最大公约数是几?

(7)什么叫公约数?什么叫最大公约数?

(8)2和19有公约数吗?是几?有最大公约数吗?是几?

(9)2和19的最大公约数是1,2和19是什么关系?

(10)什么叫互质数?(板书:互质数)

(11)请你举出有互质关系的两个数。

3.复习质数、合数、质因数、分解质因数。

(1)观察38,2,19的约数的个数,并以此为标准,给这三个数分类,可以分几类?

(2)什么叫质数?什么叫合数?(板书:质数、合数)

(3)如果把382=19改写成38=219,2和19叫38的什么?为什么?(板书:质因数)

(4)说2和19是质因数对吗?为什么?

(5)质因数能单独存在吗?它必须依存于什么概念?还有什么概念不能单独存在?

(6)把38这个合数写成2和19,这两个质因数相乘的形式叫什么?(板书:分解质因数)

4.复习能被2,3,5整除的数的特征。

(1)在计算中,我们常常需要判断一个数能不能被另一个数整除,我们可以根据数的一些特征来判断。我们都学过哪些数的整除特征?(板书:能被2,5,3整除的数的特征)

(2)38,2,19中哪个数能被2整除。为什么?能被2整除的数的特征是什么?

(3)能被2整除的数叫什么数?不能被2整除的数呢?(板书:奇数、偶数)

(4)判断一个数是奇数还是偶数的依据是什么?

(5)能被5,3整除的数有什么特征?

(6)改38中的一个数字,使它能被3整除,怎样改?

(7)能同时被2和5整除的数有什么特征?能同时被2,3,5整除的数有什么特征?你能分别举几个数吗?

(三)复习概念间的关系

(1)在刚才复习的这些概念中,有哪些概念不能单独存在,请你列举出来。(板书:倍数、约数、质因数)

(2)倍数、约数、质因数分别依存于什么概念?这些概念之间的关系是依存关系。(板书:依存关系)

(3)哪些概念之间的关系可以用下图表示?

(4)它们之间的这种关系叫什么关系?(板书:包含关系)

(5)小结:我们通过观察382=19这个等式中三个数之间的关系,不仅整理出了数的整除有关概念的网络图,还通过分析了解了概念间的关系。

(四)练习

(1)填空。

①在自然数中,既是质数又是偶数的最小的一个数是( );既是质数又是奇数的最小的一个数是( );既是奇数又是合数的最小的一个数是( );既是偶数又是合数的最小的一个数是( );既不是质数又不是合数的一个数是( )。

②所有自然数的最大公约数是( )。

③能被3和5同时整除的最小三位数是( );最大三位数是( )。

④小于10的所有质数的和是( )。

⑤一个四位数,千位上的数既是奇数又是合数,百位上的数既是偶数又是质数,十位上的数是自然数,但既不是质数又不是合数,个位上的数是最小合数,这个四位数是( )。

(2)判断题。(对的画,错的画。)

①相邻的两个自然数一定互质。 ( )

②最小的质数是自然数中全部偶数的最大公约数。 ( )

③任意两个自然数的积,一定是合数。 ( )

(3)思考题。

有14,30,33,35,39,75,143,169八个数。①把这八个数分别分解质因数;②把这八个数分成两组,每组四个数,且使它们的乘积相等。应该怎样分?

课堂教学设计说明

本节课分三个层次教学。

1.通过一题多问,从具体到抽象,把本单元的主要概念联系起来,形成网络。即:

复习倍数公倍数最小公倍数。

复习约数公约数最大公约数。

复习质数、合数、质因数、分解质因数。

复习能被2,5,3整除的数的特征。从而有目的、有计划的将这部分知识进行了系统整理,使学生对这块知识一目了然。

2.进一步分析概念之间的各种联系,明确概念间的不同关系。从而提高和深化对所学知识的认识:如:约数和倍数与整除的依存关系等。

3.应用概念综合练习。

练习充分,有层次,注意培养学生综合运用知识的能力,充分调动学生学习的积极性,达到巩固知识和提高思维能力的目的。

苏教版六年级数学上册教案 篇5

教学目标:

使学生进一步加深对列方程解决实际问题的理解,促进相关技能的形成,发展数学思考和实践能力。

教学资源:

小黑板、课前请体育老师利用体育课组织学生测试百米跑步的时间。

教学过程:

一、揭示课题

今天,我们继续进行整理和练习。

二、基本练习

1、根据下面的条件,说说数量间的相等关系。

(1)师傅每小时加工的零件比徒弟的3倍少18个。

(2)一堆黄沙运走了30车后还剩下16吨。

(3)一条围巾的价钱比一副手套价钱的2倍多25元。

2、在括号里填上含有字母的式子

(1)学校舞蹈队有x人,歌咏队的人数是舞蹈队的3倍,歌咏队有( )人;舞蹈队和歌咏队一共有( )人,歌咏队比舞蹈队多( )人。

(2)踢毽的和跳绳的每组都是x人,踢毽的有5组,跳绳的有8组。踢毽的有( )人,跳绳的有( )人;踢毽的比跳绳的少( )人,踢毽的和跳绳的一共有( )人。

三、练习与应用

1、求x的'值

(1)三角形面积275cm。 (2)长方形周长9m。

第(1)小题 先让学生独立完成。交流时说说列方程的依据以及怎样解列出的方程。

第(2)小题

先让学生独立列出方程。交流时师随机板书不同的方程,并让学生说清列方程的依据。

学生列出的方程可能有以下几种情况:

2x+1.5×2=9 (x+1.5)×2=9 x+1.5=9÷2

问:这几个方程哪些你会解了?请你说说应怎样解?

(对于有困难的学生,教师要多加关注,注意个别辅导。)

交流完后,让学生解自己所列的方程,有困难的学生也可以选择自己理解的方程来解。

指名3位学生分别板演。再集体交流。

2、第6题、第7题、第9题、第10题

让学生独立完成。集体交流时,引导学生说说每道题是根据怎样的等量关系来列方程的。

3、第8题

猎豹追捕猎物时的速度大约是一名优秀短跑运动员百米赛跑速度的3倍,大约比这名运动员每秒多跑20米。这名运动员每秒大约跑多少米?这只猎豹呢?

先让学生算一算自己在体育课上测试百米跑步时的速度大约是每秒多少米?

再让学生解答问题,然后说说自己有什么感想。

四、思考题

盒子里装有同样数量的红球和白球。每次取出6个红球和4个白球,取了若干次以后,红球正好取完,白球还有10个。一共取了几次?盒子里原来有红球多少个?

学生读题后可引导学生画线段图来理解“取了若干次以后,红球正好取完,白球还有10个”这句话的意思其实就是说明“取出的红球比白球多10个”。

再让学生列方程解答。交流时说说是根据怎样的等量关系来列方程的。

五、总结:

通过今天的学习,你又有些什么收获呢?你还有什么要提醒大家的?

苏教版六年级数学上册教案 篇6

教学内容:

P7“回顾与整理”、“练习与应用”第1—4题

教学目标:

1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。

2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。

教学资源:小黑板

教学过程:

一、揭示课题

本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。

二、回顾与整理

1、出示小组讨论题:

(1)像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解?

(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。

2、让学生围绕这两个问题进行独立思考。

3、把各自思考的情况在小小组内进行交流。

4、全班交流。

讨论题(1) 可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。

讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。

三、练习与应用

1、解方程

180+6x=330 27x+31x=145 x-0.8x=10

2.2x-1=10 15x÷2=60 4x+x=3.15

(1)让学生独立完成,指名板演。

(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。

2、解决实际问题

(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。

① 武汉长江大桥铁路桥长多少米?

② 武汉长江大桥公路桥长多少米?

xx 让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:

武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度

武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度

xx 问:在列方程时应该怎样表示题中的两个未知数量?

(2)练习与应用第3题

xx 先让学生看图后说说了解到了哪些信息。

xx 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?

xx 问:你能说说题中数量之间的相等关系吗?

(学生如有困难,教师可以画线段图帮助学生理清数量关系)

随机板书:

小树原有的高度+6个月长的高度=小树现在的高度

(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?

xx 学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。

xx 再让学生独立解答,指名板演。

xx 交流时让学生结合所列的方程说说自己的思考过程。

三、总结:

通过今天的整理与练习,你又有哪些收获?还有什么疑惑?

四、作业:

P7“练习与应用”第2、3题。

一键复制全文保存为WORD
相关文章