数字的世界显得冷冰冰且纯净如水晶,它可以给我们带来最为稀缺的事物,那便是“绝对准确”。为了大家学习方便,这次为您整理了2022苏教版六年级数学上册教案优秀5篇,在大家参照的同时,也可以分享一下给您最好的朋友。
教学内容:
冀教版小学数学六年级上册80-81页。
教学目标:
1、过程与方法:结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2、知识与技能:了解合理购物的意义,能自己做出购物方案,并对方案的合理性作出充分的解释。
3、情感态度与价值观:体验数学在解决现实问题中的价值,丰富购物经验。
教学重点:
学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:
能对自己设计的理财方案作出合理的解释。
教学过程:
一、创设情境、设疑激趣
师:同学们,现实生活中,商家为了吸引顾客或扩大销售量,经常搞一些促销活动,谁来说一说,你都知道哪些促销方式?
师:同学们知道的可真多,日常生活中,我们如何利用商家的促销手段,学会合理
购物呢?这节课,我们就来研究购物问题。(板书:学会购物)
二、引导探究、自主建构
活动一:促销
(一)观察情境图,先了解方便面的三种包装和一袋的价格,计算出其他两种包装的价格写在书上,再了解三个商店的优惠条件。
师:同学们打开书第80页,看方便面促销问题,认真观察上面的图,说说你们从图上都发现了哪些信息?
1、学生自学
2、交流
(预设)
生:我发现甲店是“买一包送一袋,买一箱送一包。”乙店是打九折优惠;丙店是购物达到30元就能打八折优惠。
师:请对这三个商店的促销方式进行一下比较分析,谈一谈各有什么优势?三家店都适合怎样购物呢?
(这里不需学生能精确计算每个商店的优惠额度,但大体上能了解每个商店更适合
2 怎样购物。)
(二)提出问题(1):买1袋这种方便面去哪家商店合适?买2袋、3袋呢?
1、思考
2、全班交流
(预设)师:作为消费者,买同样的东西肯定愿意买便宜的,也就是少花钱。同学
们不计算,你能判断出买1袋方便面去哪家店合适吗?
生:在乙店合适,因为买一袋在甲店、丙店都得不到优惠。
师:那买2袋、3袋呢?
生:买2袋、3袋也不行。
师:买几袋才能享受到甲店的优惠条件呢?
生:买5 袋或5 袋以上就可以得到甲店的优惠条件。
(三)提出问题(2):买7袋这种方便面去哪家商店合适?买8袋、9袋、10袋呢?
1 、自己独立思考、计算
2 、全班交流
(预设)
师:现在如果想买7 袋方便面,在甲店可以怎样买?
生:只买6袋就行了。因为商店会送一袋。
板书:
甲店:1.5×6=9(元)
乙店:1.5×7×90%=9. 45(元)
结论:甲店合适。
(按以上方法交流买8、9、10袋的结果)
10袋情况预设:
甲店1、1.5×9 =13.5(元)
13.5÷10=1.35(元)
甲店2、1.5×10=15(元)
10+2=12(袋)
1.5 ÷12=1.25(元)
乙店:
1.5×10×90%=13.5(元)
(这里面甲店的第二种购买方法,虽花了15元,但能得到12袋,有的学生会认为这是一种较便宜方案,现实生活中也如此。所以不应按错误定论。)
(四)提出问题(3)买多少袋方便面才能达到丙店的优惠条件?
学生计算后汇报
30÷1.5=20(袋),买20袋才能达到丙店的优惠条件。
(五)提出问题(4)
1、学生独立计算
2、小组内交流
3、全班汇报
师:谁能解释这到底是为什么?
(预设)
生1:李明只花了27元不够丙店的优惠条件。
生2:因为王强买了20 袋,20×1.5=30 (元),可以打八折优惠,所以只花了24 元,20×1.5×80%=24(元)
师:通过这两位同学的经历,你们有什么收获?
生:在购物时,一定要先算一算在哪家购物合适,才去买,就能充分利用商家的促销手段,少花钱多购物。
继续探究:出示“议一议”问题,启发学生可以算一算,然后,交流解决问题的方法和结果。
师:比较这几位同学的方案,哪一种比较合适?
结论:在丙店买最合适。
师:所以购物时我们要根据购物多少的不同,选择不同的商店,充分利用商家的优
惠政策,就能够少花钱多购物,这叫“合理购物”。
活动二:有奖销售
(一)师:为了促进销售,商家还会搞另外一种促销方式——有奖销售。现在让我们到购物广场去看一看吧。打开书81页,读一读上面的销售广告,了解广告中的数学信息。
学生阅读“有奖销售”上的销售广告。交流一下广告中的信息。
(二)出示问题(1),计算奖金额和中奖率。
师:根据这则广告,请同学们算一算,这次有奖销售活动的奖品总金额是多少元?中奖率是百分之几?
学生独立思考并计算。然后全班交流。
1、奖品总金额
500×10+100×20+50×60=10000(元)
2、中奖率:(60+20+10)÷1000=9%
(三)出示问题(2),学生计算销售额,并分析奖金额与销售额之间的关系,进一步认识“有奖销售”的意义。
师:谁知道如果奖券已经全部发出,商家至少卖出了多少元的商品?
生:商家每发出一张奖券,说明至少已卖出了100元商品,所以1000张奖券全部发完,
1000×100=100000(元),商家至少卖出10 万元的商品。
师:那么奖金额至多占销售额的百分之几?
学生计算后汇报。
生:奖金额是10000元,而销售额是100000 元,10000÷100000=10%,奖金额最多占销售额的10%。
(四)提出问题(3)
师:很好。如果这10 万元的商品全部按八五折销售,同学们算一算,会让利给顾客多少元?
学生独立思考、计算。
生:100000-100000×85%=15000(元)
继续探究:分别提出“议一议”的两个问题,让学生充分发表自己的意见。教师进行正确引导。
师:请同学们对比一下这两种结果,你有什么感想?
师:那么如果你是顾客,你会选择哪种销售方式?为什么?
师:大家都可以有不同的想法,但是,我们还是小学生,不能单独参与抽奖活动。如果要做,也要在大人的带领下去做。
三、强化训练、应用拓展
红光小学准备买28台电视机。甲、乙两个商家每台电视机原价都是500元,为了做成这笔生意两个商家做出如下优惠
请你算一算,再比一比,为学校拿个主意:到哪个商家购买更便宜?
甲:一次购买20台以上(含20台)的,按七五折优惠
乙:“买十送三”,即每买10台另外免费送3台同样的电视机,不满10台仍按原价计算。
四、自主反思、深化体验
师:通过本节课的学习,你有哪些收获想与大家交流一下?
教学内容:
教科书第81、82页练习十五第6-11题。
教学目标:
1、进一步理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,并能根据运算律和运算性质进行一些分数的简便运算。
2、在学习分数四则混合运算的过程中,进一步积累数学学习的经验,用分数四则混合运算解决一些实际问题。
教学重、难点:
根据整数的运算律和运算性质对分数四则混合运算进行简便计算。
教学措施:
设计相应的计算题和实际问题,关注学习困难生的学习情况。
教学准备:
教学光盘及补充题
教学过程:
一、基本练习
1、练习十五第6题。
学生先回忆等式的性质,指名说一说。
观察每个方程,说说方程的特点。
提示:都要把方程的左边进行化简,再应用等式的性质求方程的解。
学生独立解每个方程,指名板演,进行讲评,提醒学生自觉进行检验。
2、计算下列各题,能简算的要简算。
(7/8-2/3)×(7/10+1/5) (2/5+1/3)÷4/5+3/4
3/10÷[1/2×(2/5+4/5)] 7/16÷1/10-7/16÷1/9
(1-1/6÷5/12)×7/6 (4/25×99+4/25)÷1/8
学生独立计算,每人任选三题,同时指名学生板演。
教师结合学生板演情况进行讲评并及时总结分数四则混合运算的运算顺序。
3、练习十五第8题。
(1)图中告诉我们哪些信息,你会计算梯形的面积吗?
(2)学生独立列式计算,任选一题。
4、练习十五第9-11题。
(1)分析第9题,学生先读题并列出算式,然后请学生说说解题思路。
(2)分析第10题,先说说数量关系再列算式,要让学生明白要求两个小队平均每人采集树种多少千克,先要算这两个小队一共采集树种的千克数和这两个小队的总人数。
(3)分析第11题,解决每一问时鼓励学生说数量关系并注意第2小题与第3小题之间的联系。
二、拓展练习
解决实际问题:
1、一个食堂,星期一用去煤气7/4立方米,星期二用去煤气3/2立方米,两天用的煤气量占本周计划用气量的3/8。这一周计划用多少立方米煤气?
2、工程队运来黄沙9/2吨,运来的水泥比黄沙重量的2/3少1/5吨。黄沙和水泥一共运来多少吨?
3、小华看一本120页的故事书,前3天看了总页数的3/4,后2天准备按1:2看完剩下的页数,最后一天要看多少页?
三、全课总结
进行分数四则混合运算时不仅要注意运算顺序,还要注意分数加、减法与分数乘、除法的计算方法的不同,必须看清什么时候需要通分,什么时候需要先约分再计算;解决实际问题时要认真读题,分析数量关系再列式解答。
四、布置作业
练习十五第7、9、10、11题。
教学目标:
1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
教学重点:税额的计算。
教学难点:税率的理解。
教学过程:
一、复习
1、口答算式。
(1)100的5%是多少? (2)50吨的10%是多少?
(3)1000元的8%是多少? (4)50万元的20%是多少?
2、什么是比率?
二、新授
1、阅读P72-73页有关纳税的内容。说说:什么是纳税?
2、税率的认识。
(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。
(2)试说以下税率表示什么。
A、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?
B、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?
3、税款计算
(1)出示例5(课本99页)
一家大型饭店十月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?
(2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)
(3)要求“应缴纳营业税款多少”就是求什么?
(4)让学生独立完成?
4、看课本98页内容。读一读,什么是纳税?什么是税率?
三、练习
1、巩固练习:练习三十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。 )
2、依据第5题,学生各自发表意见。
实践要求:
1、经历有目的、有设计、有步骤、有合作的实践活动。
2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。
3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。
4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。
教学内容:
冀教版小学数学六年级上册69——70页。
教学目标:
1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。
2、数学思考:如何对自己设计的理财方案作出合理的解释。
3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。
4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。
教学重点:
学会理财,会对自己设计的理财方案作出合理的解释。
教学难点:
对自己设计的理财方案作出合理的解释。
教学流程:
一、导入
老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。
{设计意图:通过和学生谈话,轻松引入本节课的课题}
二、任务一
设计方案,解决问题
聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)
(1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)
(2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)
(3)议一议:你认为那种存钱方案?为什么?
{设计意图:学生通过前面的学习,已经具备了计算利息的能力,学生能够根据聪聪家的情况,制定不同的存钱方案,进而计算每种方案的利息,从而获得一种成功的喜悦感}
三、小组汇报、展示
{在学生计算的过程中,教师巡视,发现学生有代表性的方案进行展示,重点放在解释哪种方案,即学生能对自己制定的方案进行合理的解释}
四、任务二
聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。
零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。
(1)计算聪聪家每个月的结余。
(2)根据聪聪家的实际情况,制定合理的存钱计划,并说明理由。
(3)按照你的存钱计划,算一下,到期能取回多少钱?
知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。
其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。
五、分享收获
{设计意图:希望学生通过这节课,感受在给定目标下,针对具体问题提出设计思路、制定简单的方案解决问题的过程。}
六、课下作业
为自己的零花钱制定一个零存整取的存钱计划。
{设计意图:作为本节课知识的延续,让学生养成一个合理消费的习惯,做一个生活上有计划的人,合理支配自己的财富}
板书设计:
收入:2160+4180=6340(元)
支出:2500+800+200+160+30=3690(元)
结余:6340—3690=2650(元)
【教学目标】
1、在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2、会正确地读、写正、负数,知道0既不是正数,也不是负数。
3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
【教学重点】
负数的意义和负数的读法与写法。
【教学难点】
理解0既不是正数,也不是负数。
【教学过程】
一、激发兴趣,导入新课
游戏:《我变,我变,我变变变》
老师说一句话,请同学们说出一句和它意思相反的话。
二、创设情境、学习新知
1、教学例1。
(1)课件出示:中央电视台天气预报的一个场面:哈尔滨零下6摄氏度至3摄氏度。
你能用自己的方法来表示这两个温度吗?
学生思考后反馈,教师适时点拨、评价和引导。
教师小结:
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第123页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2、自主学习例2。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。今天,老师带来了一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,课本第124页上图的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看新疆的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的海拔情况,课本第124页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平面低155米。
(2)巩固练习:课本第124页试一试。
教师巡视,集体订正。
3、小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
学生交流、讨论。
指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。
提出疑问:0到底归于哪一类?引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、 3、+8844.43等这样的数叫做正数;像-6、-155等这样的数叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写,负号可以不写吗? 为什么?
三、巩固练习,深化认识
1、课堂活动:1、2题。
①读一读,议一议。
学生齐读,巩固负数的读法。
②根据题中的信息,说一说三个班的答题情况。
学生讨论交流,并说出理由。
2、练习二十五:1、3题。
独立练习,反馈交流。
四、联系生活,拓展运用
说一说:生活中哪些地方还会用到负数。