乘法分配律教学设计(优秀8篇)

作为一位不辞辛劳的人民教师,很有必要精心设计一份教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那么优秀的教学设计是什么样的呢?书读百遍,其义自见,以下是美丽的小编帮助大家找到的乘法分配律教学设计(优秀8篇),欢迎借鉴。

乘法分配律教学设计 篇1

【教学内容】

《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。

【教材简析】

本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。

【教学目标】

1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。

【教学重点】

让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。

【教学难点】

清楚地表述自己发现的规律,理解及应用乘法分配律。

【教学过程】

一、创设情境,感知规律

1.提出问题,列出算式。

出示情境图

谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?

信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。

问题预设:济青高速公路全长约多少千米?(板书)

谈话:请你试着用两种方法在答题纸上解答。

生独立解答。

预设:

2.结合情境,感知规律。

提出要求:结合线段图说说算式每一步的含义。

回答预设:①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。

②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。

【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】

二、研究素材,猜测规律

教师引导学生观察算式谈发现。

预设发现:两个算式结果相等。可以用等号连接。

教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。

预设区别:①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。

②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。

谈话:根据前面运算律的学习,你有什么想法?

预设回答:这可能又是一个规律。

【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】

三、讨论交流,验证规律

1.举例验证规律。

谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。

学生独立计算举例。

指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。

谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的`等式是否成立。

预设举例:(25+35)×4=25×4+35×4

(60+50)×2=60×2+50×2

(65+55)×42=65×42+55×42

……

教师引导学生发现像这样的例子举不完,可以用省略号表示。

2.观察几组等式的相同点。

教师引导学生观察这几组等式的左边和右边分别有什么相同点。

预设回答:①这几组等式的左边都是两个数的和乘一个数。

②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。

3.总结规律。

教师引导学生用自己的话说说这个规律。

谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。

教师出示乘法分配律。

谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。

生按要求说什么是乘法分配律。

谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?

预设回答:可以用字母表示。

教师要求学生在答题纸上试着用字母abc来表示乘法分配律。

学生试着在答题纸上写字母表达式。

指生板演(a+b)c=ac+bc。

谈话:对于乘法分配律用字母来表示,感觉怎么样?

预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!

教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。

【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】

四、巩固拓展,应用规律

1.连一连。

2.在□里填上合适的数或字母。

3.火眼金睛辨对错。

吴正宪《乘法分配律》的教学设计 篇2

教学内容

义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律

教材分析

本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。

学情分析

本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。

教学目标

1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。

2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。

3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。

教学重点

理解乘法分配律的意义。

教学难点

发现与归纳乘法分配律。

教学准备

课件习题卡

教学过程

一、结合实事创设情景,引入新课

1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!

2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?

3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?

二、合作交流,探索发现新知

1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。

板书:乘法分配律

2、发现和归纳乘法分配律

(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?

(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?

(3)生举例并展示,共同验证并读一读式子。

(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?

(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。

3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。

三、小结

同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?

四、分层练习,逐级达标

1、填一填:习题卡第一题

巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。

学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。

2、看一看:习题卡第二题

3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。

五、回顾课程,进行总结

同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?

板书设计

乘法分配律

(5+10)×24=5×24+10×24

(a+b)×c=a×c+b×c

25×(4+2)=25×4+25×2

a×(b+c)=a×b+a×c

习题卡

填一填

1、(32+25)×4=32×()+25×()

2、(64+12)×5=()×5+()×5

3、(7+6)×8=7868

4、(43+25)×2=

5、3×6+7×6=(+)

看一看

下面哪个算式是正确的?正确的画“√”,错误的画“×”

(19+28)×56=19×56+28

(7×3)×32=7×32+3×32

64×64+36×64=(64+36)×64

乘法分配律教学设计 篇3

学习内容:

人教版小学四年级下册第三单元乘法分配律

学习目标:

1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。

2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。

3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。

学习重难点

借助乘法的意义理解乘法分配律的意义和内涵。

配套资源

实施资源:

《乘法分配律》教学课件

学习过程:

一、情境导入,引入新课

师:之前我们已经学习了乘法交换律、结合律,今天这节课我们继续学习乘法的另一个运算定律。

请同学们认真看下面的题目:有一个长方形的果园,原来宽20米,长80米,扩大规模后,长增加了30米。问:现在这个果园的面积有多大

二、学习新知

①自主探索,独立解决问题

请大家闭上眼睛想象一下,如果用一幅图来表示题目的意思,这幅图会是怎样的呢

把你想到的图形画在练习本上。并试着去解决这个问题。

②汇报交流,明确算法

谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。

③全班反馈(课件动态演示)

先来看第一种方法:

可以先算出扩大规模后果园的长,再算出扩大规模后果园的面积,即(80+30)×20=2200(平方米)

(设计意图:借助于课件,展示出这道题目的示意图,进行动态演示,可以让学生清楚地看到每一步的计算表示的`实际意义是什么,对理解另一种方法打下基础。)

再来看第二种方法,可以先算出果园原来的面积,再算出后来增加的面积,最后把原来的面积和增加的面积全起来就是果园现在的面积。即80×20+30×20=2200(平方米)

(设计意图:借助于课件,进行动态演示,让学生从中清楚地看到这种方法和第一种方法的不同之处,同时又真正的明白,虽然方法不同,但所要求的结果完全一样)

同学们,你们有什么发现呢大家是不是已经发现了尽管这方法不一样,但这两种方法的结果都是一样的。那就说明(80+30)×20=80×20+30×20(这两个式子是相等的)

(设计意图:借助于课件的动态演示,使学生更清楚地看到,两种方法求出的是同一个结果,同时,更能给学生初步感悟乘法分配律提供一定的帮助。)

②师:刚才扩大规模后的长是增加了30米,现在给大家一次机会,你来决定让长增加几米同时请你用两种方法算一算,看用两种方法计算出的结果是否一样

如果我们把果园的宽的米数用圆形来表示,原来的米数用三角来表示,长增加的米数用五角星来表示,上面的式子我们是不是就可以这样表示了呢

( +▲)×★=×★+▲×★

(设计意图:利用课件的方便性,在很短的时间给学生展示了不同的数据所计算出的结果都是一样的,让课堂节奏更稳,更快,解决问题更高效,同时在一定程度上让学生的注意力更加集中了。)

③接下来,我们共同来验证一下,看我们想到的这个式子是不是正确的呢现在这里面原来的长和宽及扩大规模后增加的长的数量都由你来决定填写,填写完后,进行计算,验证,来证明这个等式不仅适用上面的两个例子,同样适用于你所举的例子。

验证;(100+50)×40=100×40+50×40

结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把积相加。

同学们,你们真厉害,你们所发现的规律在数学上就叫做乘法分配律。用字母表示为a+b)×c=a×c+b×c

三、巩固练习:

1、请看下面这个算式,(40+8)×25

结合刚才的长方形的面积,你想到了什么

我们可以想象成宽是25米,原来的长是40米,扩大规模后增加的长是8米,因此我们可以先求出原来的面积40×25和增加的面积8×25,合起来就是现在的面积。

2、计算59×20+41×20

师:除了把它们想象成刚才的长方形的面积,还可以想象成什么呢实际上生活中有很多这样的情况,我们可以把它想象这样的场景:学校要举行歌唱比赛,参加的20名同学要统一着装,老师们先买了20件上衣,每件59元,又买了20条裤子,每条裤子41元,老师买这些衣服一共花费了多少元钱呢

59×20+41×20

=(59+41)×20我们可以先求出一套衣服多少元再乘以

=100×20它的套数,是不是计算更简单呢

=20xx

亲爱的同学们,相信你们通过今天的学习,对乘法分配律已经有了一个初步的认识,今天的课快要结束了,老师留给大家一个问题:如果这道题目问的是原来的面积比增加的面积多多少平方米你认为应该怎样做呢如果有两种方法可以解答,你认为这两种方法之间有联系吗请大家认真思考,下节课我们再见!

《乘法分配律》优秀教学设计 篇4

教学内容

P36页例3,做一做,练习六习题。

教学目标

1、知识与技能:引导学生探究和理解乘法分配律。

2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

教学重点

乘法分配律的意义和应用。

教学难点

乘法分配律的反应用。

教学过程

一、目标导学

(一)导入新课

1、复习导入

(8+2)×1258×125+2×125

2、揭示课题:乘法分配律

(二)展示目标(见教学目标1、2)

二、自主学习

(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)

1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?

2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?

3、计算这两道题你发现了什么?能用一句话概括吗?

4、这是乘法的什么运算律?用字母怎样表示?

5、会用简便算法计算4×25+6×25吗?

(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)

(三)自学检测

下面哪些算式运用了乘法分配律?

117×(3+7)=117×3+117×7

24×(5+12)=24×17

(4+5)×a=4×a+5×a

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

(二)师生互探

1、解答各小组自学中遇到不会的问题。

2、针对自学提纲5题请不同方法同学汇报。

3、结合“自学提纲”引导学生归纳总结:(并板书)

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。

四、达标训练(1、2题必做,3题选做、4题思考题)

1、下面哪个算式是正确的?正确的打√,错误的打×。

56×(19+28)=56×19+28()

32×(7+3)=32×7+32×3()

64×64+36×64=64×(64+36)()

2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数

⑴25×(200+4)⑵35×201

25×200+25×435×200+35

⑶265×105—265×5⑷25×11×4

265×(105—5)11×(25×4)

3、用乘法分配律计算。

103×2020×5524×205

4、在()里填上适当的数。

167×2+167×3+167×5=167×()

28×225—2×225—6×225=()225

39×8+6×39—39×4=()×()

五、堂清检测

(一)出示检测题(1-2题必做,3题选做,4题思考题)

1、用简便方法计算。

24×75+24×25125×22—125×14

(25+20)×435×99+35

2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?

3、计算。

89×10135×36+35×63+35

4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?

(二)堂清反馈:

作业布置

练习册相关习题。

板书设计

乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25(2)4×25+2×25

=6×25=100+50

=150(人)=150(人)

(4+2)×25=4×25+2×25

(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

乘法分配律教学设计 篇5

教学目标:

1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学重难点:

发现并理解乘法分配律。

教学准备:挂图、小黑板。

教学流程:

一、创设情境,导入新课。

师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。

看看买什么衣服好看呢。

二、自主探索,合作交流。

1.出示:买5件夹克衫和5条裤子,一共要付多少元?

师问你打算怎样算?

生口答师板书:

(65+45)×565×5+45×5

请学生分别说清两道算式的含义。

2.师问猜想一下,这两道算式的结果会怎样?

要验证我们的。算式是否正确,应该用什么方法?

生计算,个别板演。

证明这两道算式的结果是相等的。

中间应用“=”接连。

3.生读算式(65+45)×5=65×5+45×5

师问等号两边的算式有什么相同和不同?

生同桌说一说,并汇报。

4.这两道算式相等是一种巧合还是有规律的呢?

出示:(2+10)×6=2×6+10×6

(5+6)×3=5×3+6×3

师问中间可以用“=”来连接吗?

5.小组讨论:这三组等式左边有什么特点?

右边有什么特点?

生汇报。

6.师问你能写出具有这样规律的等式吗?

生独立写一写,个别板书。

7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

生写一写,个别板演。

8.揭题:乘法分配律

(a+b)×c=a×c+b×c

9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

三、巩固练习,拓展应用。

想想做做:

1.在口里填上合适的数,在○里填上运算符号。

(42+35)×2=42×口+35×口

27×12+43×12=(27+口)×口

15×26+15×14=口○(口○口)

72×(30+6)=口○口○口○口

强调:乘法分配律,可以正着用,也可以反着用。

2.横着看,在得数相同的两个算式后面画“√”

(28+16)×728×7+16×7

15×39+45×39(15+45)×39

74×(20+1)74×20+74

40×50+50×9040×(50+90)

3.算一算,比一比,每组中哪一道题的计算比较简便。

(1)64×8+36×825×17+25×3

(64+36)×825×(17+3)

让学生体会乘法分配律可以使计算简便。

4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

生独立完成并汇报。

5.你能根据下图列出两

道综合算式吗?

上面的两道算式能组成一个等式吗?

四、全课小结

师问今天你有什么收获?和你的小伙伴说一说。

五、课堂作业

《补充习题》第26页。

《乘法分配律》优秀教学设计 篇6

教学内容

《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。

教材简析

本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。

教学目标

1、结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。

2、学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。

3、学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。

教学重点

让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。

教学难点

清楚地表述自己发现的规律,理解及应用乘法分配律。

教学过程

一、创设情境,感知规律

1、提出问题,列出算式。

出示情境图

谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?

信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。

问题预设:济青高速公路全长约多少千米?(板书)

谈话:请你试着用两种方法在答题纸上解答。

生独立解答。

预设:

2、结合情境,感知规律。

提出要求:结合线段图说说算式每一步的含义。

回答预设:

①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。

②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。

设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。

二、研究素材,猜测规律

教师引导学生观察算式谈发现。

预设发现:两个算式结果相等。可以用等号连接。

教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。

预设区别:

①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。

②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。

谈话:根据前面运算律的学习,你有什么想法?

预设回答:这可能又是一个规律。

设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。

三、讨论交流,验证规律

1、举例验证规律。

谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。

学生独立计算举例。

指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。

谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。

预设举例:(25+35)×4=25×4+35×4

(60+50)×2=60×2+50×2

(65+55)×42=65×42+55×42

教师引导学生发现像这样的例子举不完,可以用省略号表示。

2、观察几组等式的相同点。

教师引导学生观察这几组等式的左边和右边分别有什么相同点。

预设回答:

①这几组等式的左边都是两个数的和乘一个数。

②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。

3、总结规律。

教师引导学生用自己的话说说这个规律。

谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。

教师出示乘法分配律。

谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。

生按要求说什么是乘法分配律。

谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?

预设回答:可以用字母表示。

教师要求学生在答题纸上试着用字母abc来表示乘法分配律。

学生试着在答题纸上写字母表达式。

指生板演(a+b)c=ac+bc。

谈话:对于乘法分配律用字母来表示,感觉怎么样?

预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!

教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。

设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。

四、巩固拓展,应用规律

1、连一连。

2、在□里填上合适的数或字母。

3、火眼金睛辨对错。

吴正宪《乘法分配律》的教学设计 篇7

教学目标:

1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力,《乘法分配律》教学设计。

2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。

3、能够运用乘法的分配律进行简便计算。

重点、难点:

重点:学生参与推导乘法分配律的过程。

难点:乘法分配律的推理及运用。

教学过程:

一、比赛激趣,提出猜想。

(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做A组的题,右边的两组做B组的题,看谁做的又对又快,开始)

9×(37+63)9×37+9×63

(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?

教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。

引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×(37+63)=9×37+9×63

(3)将学生的发现以他(她)的名字命名为“xx猜想”。

【设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。】

二、引导探究,发现规律。

1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?

(1)全班同学独立完成。

(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)

还有不一样的方法吗?谁来说说看?(生回答,师板书)

算式(28+22)×3和28×3+22×3的每一步各表示什么?谁能说给大家听听?

(3)观察这两个算式,你有什么发现?

引导学生比较两个算式异同点,并指名学生说一说自己

生:这两个算式的得数是一样的。

师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。

生:等于号

师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以(35+25)×3=35×3+25×3

师:再和前面的一组式子一起观察,

9×(37+63)=9×37+9×63

(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)

2、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)

(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的例子是否相等,教案《《乘法分配律》教学设计》。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)

(2)学生回报:谁来说一说自己举的例子。

(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)

(4)轻声读这些等式,你发现了什么?

3、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?

学生回报。

(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)

同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?

结合学生回答,教师板书:(a+b)×c=a×c+b×c

齐声读两遍。

(4)对于乘法分配律,用字母来表示,感觉怎样。

引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。

三、加强应用、深化理解

1、瞻前顾后填一填。

(10+7)×6=□×6+□×6

8×(125+9)=8×□+8×□

7×48+7×52=□×(□+□)

2、火眼金睛看一看:

判断下面算式是否正确?并说明理由?

56×(19+28)=56×19+28()

32×(7×3)=32×7+32×3()

25×12+12×75=12×(25+75)()

25×99+25=(99+1)×25()

3、利用乘法分配律,计算下列各题。(80+4)×2534×72+34×28师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

4、找朋友

(10+6)×410×4+610×4+6×4

5×(7+9)5×7+5×95×7×9

3×25+7×253+7×25(3+7)×25

5、对口令

师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。

6、脑筋急转弯。

猜一猜,等号后边是三个什么字?

木×(1+3+2)=?

四、总结:

1、回忆一下,这节课你学会了什么?

2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。

《乘法分配律》教学设计 篇8

教学目标:

1、借助画图的方式理解、掌握乘法分配律并会用字母表示。

2、能够运用乘法分配律进行简便运算。

3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。

4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。

教学重、难点:

理解并掌握乘法分配律。难点是乘法分配律的推理及运用。

教学过程:

一、情境导入:

出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?

二、探究发现,归纳总结。

(一)借助图形,感知模型。

1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?

请把想象的图画出来。交流学生作品后,课件出示

60米                   30米

20米     《乘法分配律》教学设计

原面积                  增加的部分

2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?

评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。

(二)借助图形,抽象模型。

1、出示几何图形:用两种方法解决问题。

60米                 (  )米

20米  《乘法分配律》教学设计

原面积                  增加的部分

刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?

2、交流:你想增加几米?怎样算?结论是什么?

师相机板书。

引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。

3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。

(   )米                (   )米

(  )米《乘法分配律》教学设计

原面积             增加的部分

4、交流:你是怎么猜测和验证的?结论是什么?

教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)×c=a×c+b×c

讨论:这个规律在数学上叫——?(板书课题——乘法分配律)

(三)借助图形,逆用模型。

1、出示计算题:

(50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。

引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?

2、46×25+54×25、98×20+98×80

请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。

(四)借助图形,拓展模型。

1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?

你们能解决这个问题吗?试着算一算。

反馈交流:说说你们是怎么解决的?

我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。

2、20×60-20×30=600与(60-30)×20=600我们发现,它们之间存在着什么样的关系呢?

谁能用字母来表示这个新规律呢?

师板书:(a-b)×c=a×c-b×c

三、科学练习:

董笑

一键复制全文保存为WORD