读书是学习,摘抄是整理,写作是创造,这里是美丽的编辑为大伙儿收集的商的近似数教学设计【优秀7篇】,欢迎参考,希望可以帮助到有需要的朋友。
“商的近似数”这一内容主要让学生经历用“四舍五入”的方法求商的近似数的过程,体验迁移应用的学习方法,激发学生的学习兴趣,培养学生学数学、用数学的良好习惯。本节课我从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识,收到了良好的教学效果。
一、学生自主探究,策略多样。
在教学时,对教材进行处理,我有意识地开发生活资源。首先我讲述生活中的实例,当我刚想提出要求时,发现有的学生已经做了起来。我并没有阻止,而是继续让学生在计算中发现问题。算了一会后,发现有的学生抓耳挠腮,有的学生小声的嘀咕,还有的干脆停下了笔看同桌的。当问题产生以后,解决问题便成为了学生学习的目标。但由于我没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了较大的自由度。学生既可以结合已经有的知识经验解决这一问题,也可以“创造”出一种新的方法来解决,在解决问题中体现了策略的多样性。
二、创设了轻松,自由探索的课堂氛围。
举出生活实例后,我出示例6:爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以自学的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。学生自学完毕,我问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。在这一环节中,学生自主探索,发现问题,合作学习,让学生经历求商的近似数的过程,培养学生的自学能力,发现问题,解决问题的能力,同时也让他们尝到自学的成果。
三、设计贴近生活,学以致用的练习。
教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值,学习数学知识,是为了更好地去服务生活,应用于生活,学以致用。因此,在设计练习时,我设计了一系列与生活相关的题目,使学生体会点到“求商的近似值”在生活中的用处,增强学习数学的兴趣,解决问题的策略也就因真实的生活变得丰富多样,让学生拓展思维得到发展。
回顾这一节课,也存在一些不足:本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习。 但在实际教学中才发现计算才是真正的教学难点,因此,在以后的教学中,多加强计算能力的训练,充分调动学生对计算的兴趣,做到“细心精准”。
小数除法经常会出现除不尽的情况,或者商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。本节课是在学生已经学过求一个小数的近似值,以及求小数乘法的积的近似值的基础上进行教学的,这里只是通过例7一道计算钱数的应用题,让学生自己想一想,怎样取商的近似值。由于计算钱数时一般算到“分”就可以了,那么题中的结果应保留两位小数,除的时候要除到千分位,也就是要先算出三位小数。然后让学生自己确定,怎样把小数点后面第三位小数按“四舍五入法”处理。接着,让学生试算“做一做”中的练习题。这一题是让学生根据不同要求取商的近似值。使学生更明确,算出的小数位数都要比要求保留的小数位数多一位,然后按“四舍五入法”省略尾数。
1、在读题中理解题意,渗透思想教育。例题给学生留出了更为自由发挥的空间,一句“从中读出了什么信息”的开放问题,引导着学生建立条件与条件间的联系,培养了学生根据条件提出问题的能力,提高了学生收集、处理信息的水平。
2、在试算中发现问题,联系旧知思考。教师有意制造“除不尽”的矛盾冲突,把学生推到自主探究的前台。学生联系求小数的近似数这一旧知,明确了解决问题的方向——取近似数;把握题目中的一个“元”字,结合已有的关于人民币的处理经验,获得了保留两位小数的信息,使学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。
3、在交流中相互启发,探寻取值方法。除到小数位数的哪一位是求商的近似值的关键,教师以同一问题“还要继续除下去吗?”充分开发和利用教学中的现有资源,加强生生之间的互动,在对比中探寻取值方法,把教学建立在更广阔的交流背景之上,为课堂教学注入新的活力。
4、在小结中对比沟通,形成整体认识。充分利用课堂,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在元认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的终身发展都有着重要的意义。
从课后的练习中来看,学生对于这部分内容的算法是清楚的,但是在笔算的错误率还比较高,还需要对计算技能进行训练。
教学内容:
P23例7、做一做,P26练习四第10、11题。
教学目的:
1、使学生学会用“四舍五入”法取商的近似数。
2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。
3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学重点:
知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。
教学难点:
能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学过程:
一、复习
1.按“四舍五入法”,将下列各数保留一位小数.
6.03 7.98
2.按“四舍五入”法,将下列各数保留两位小数.
8.785 7.602 4.003 5.897 3.996
做完第1、2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.
3.计算0.38×1.14(得数保留两位小数)
二、新课
1.教学例7:
教师出示例6,口述图意,再列式计算。当学生除到商为两位小数时,还除不尽。教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候要除到哪一位?为什么?(应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)横式应该怎样写出?教师板书。
教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”。)
我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?
2.P23做一做:
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)
师:解题时用了什么技巧?
三、巩固练习
1、求下面各题商的近似数:
3.81÷732÷42246.4÷13
2、P26第10题第(1)题。
四、作业:P26第10题第(2)题、第11题。
五、总结:今天大家有什么收获?
板书设计:
商的近似数
3.81÷7≈0.5432÷42≈0.76246.4÷13≈18.95
0.5440.76118.953
7)3.8142)32.013)246.4
3529413
31260116
28252104
3080124
2842117
23870
65
我在教学《商的近似数》一课时,对教材进行了处理,有意识得开发生活资源。首先我出示例7:爸爸给王鹏买了1筒羽毛球,一筒羽毛球12 个,这筒羽毛球是19、4元,买一个大约多少钱?并以谈话的形式引出数学问题,营造一种有利于学生学习的氛围。使其积极主动地学习,同时体现了数学来源于生活。再要求学生根据提出的信息练出计算。当学生除到商为两位小数时,还除不尽,我在巡视中发现,有的学生一直往下除,根本没有停下来的意思。这时教师就问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候该怎么办?”听后。同学们都明白了保留两位小数的道理,使学生学会了根据实际、生活需要用四舍五入法求商的近似数。本以为求近似数是数学难点。但在实际数学中才发现计算是真正的数学难点。由于例题及做一做中所有习题全是小数除以整数,所以当作业中出现小数除以小数时,许多学生都忘记了“一看,二移”的步骤,所以在设计巩固练习是应增加小数除以小数的练习。
其次在上课的时候,不能因为需要保留两位小数或几位小数而强调学生只能除到小数部分的第三位或第二位。遇到学生除了比实际需要更多的数位。应加以鼓励表扬并及时提示学生根据实际需要去除,这也许是学生创新的灵感之花,是一种钻研精神的表现,新课程改革需要的是这样的教学,也需要这样的老师,更需要我们培养有创新精神的学生。
《商的近似数》是堂新授课。但是我们已经学过积的近似数,于是我尝试让学生自己完成例题,并由学生来完成讲解,尝试效果如何。
1、问题的生成是学生亲身经历的,而不是教师提供的。
当学生在计算150÷44的时候,碰到了一种现象“除不尽”。这在以前的小数除法中没有出现过,与学生原有的认知产生了冲突,形成了问题。这是其自己发现的,很自然便会产生一种自己尝试解决的迫切欲望。这无疑为引导学生自主探究解决问题奠定了良好的心理基础。
2、解决问题策略的多样性,体现了学生自主探究的成果。
当问题产生以后,解决问题便成为了学生学习的目标。但由于教师没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了比较大的自由度。学生既可以结合已有的知识经验去解决这一问题,也可以“创造”出一种新方法来解决。当然,也出现了一些思路是正确的,结果却是错误的情况。但无论怎样,这是学生经过了一番思考后产生的一些想法,也是真正意义上的“解决问题策略的多样性”的典型表现。
3、问题解决的过程也是一个学生评价与反思的过程。
学生在展示自己独特的。解决问题的方法和策略的同时,他们同样也关注别人解决问题的方法或策略。当别人的方法与自己不同时,学生自然会产生“为什么他的方法与我的不一样”、“我的方法到底有没有问题”等想法,从而促使其反思自己的做法。
总的看来,我在本节课的教学中,引导学生充分经历了问题的生成和解决过程,突出了学生在问题生成和解决过程中的主体作用,收到了良好的效果。
近似数在四年级就已经接触了,所以上课时我写上标题《商的近似数》让大家猜一猜本节课学什么?孩子们说:把商求出来,再算他的近似数。”从题目上一目了然,可是为了让学习差的同学理解只能每个细的环节或每一句话都要说清楚。于是让孩子们分析例题,列算式。然后独立计算,本例题的商是个循环小数,孩子们没有学过,但为了让学生体验当结果不能除尽时怎么办?逼着孩子想办法,有时亲自做了比老师用语言描述的体验的更真实,因此不能让孩子变得懒惰,手脑并用。当孩子体验到余数一直是8,商一直是6,商除不尽,那实际要付钱怎么办?孩子们只能想到求近似数,接触到孩子认知,孩子们心悦诚服,印象深刻。
数学源于生活,本节课从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识。收到了良好的教学效果。
我在教学《商的近似值》一课时,对教材进行处理,我有意识地开发生活资源。首先教师出示例7 :爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以谈话的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。再要求学生根据提出的信息列式计算.当学生除到商为两位小数时,还除不尽。教师巡视中发现,有的学生一直往下除根本没有停下来的意思。这时教师问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。
本以为求近似数是教学难点, 所以在新授前安排了大量相关知识的复习。 但在实际教学中才发现计算才是真正的教学难点, 由于例题及做一做中所有习题全是小数除以整数, 所以当作业中出现小数除以小数计算时, 许多学生装都忘记了“一看, 二移”的步骤。 所以在设计巩固练习时应增加小数除以小数的练习。
其次我根据学情补充介绍了一种求商近似数的简便方法。 即除到要保留的小数位数后不再继续除,只把余数同除数做比较,若余数比除数的一半小,就说明求出下一位商要直接舍去;若余数等于或大于除数的一半,就说明要在已除得的商的末一位上加1。介绍了这种方法感觉好的同学算得更快了,但悟性较差的学生听完后连最基本的保留两位小数应除到小数点后面第几位也混淆不清了。所以下次再教时,此方法的介绍时间可以适当后移,放在练习课上。
其实在上课的时候,不能因为需要保留两位小数或保留一位小数而强调学生说只能除到小数部分的第三位或第二位,遇到学生除到了比实际需要更多的数位,应加以鼓励表扬,并及时提示学生根据实际需要去除,决不能“一味扼杀,一棒子打死”。这也许是学生创新的灵感之花,是一种钻研精神的表现,新课程改革需要的是这样的教学,也需要这样的老师,更需要作为教师的我们要培养有创新精神的学生。新教材为我们提供了广阔的思维空间,我们要结合课改,挖掘教材,合理、科学的利用教材,全面贯彻课改精神,实现学生在学习活动上的“知识与技能、过程与方法、情感态度与价值观”三维目标而努力教学,这样才无愧于学生,才能称得上是一名新课改下的老师。