循环小数的教学设计(优秀9篇)

作为一名辛苦耕耘的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以更好地组织教学活动。我们该怎么去写教学设计呢?问渠那得清如许,为有源头活水来,以下是美丽的小编为大伙儿整理的循环小数的教学设计(优秀9篇),欢迎参考,希望大家能够喜欢。

《循环小数》教学设计 篇1

教学目标:

①知识技能:通过学习与探究小数的循环现象,探索循环小数的循环规律。初步认识循环小数,知道循环小数的位数是无限的;

②过程与方法:经历讨论、交流的学习活动,培养学生的分类能力、分析能力和概括能力。

③情感与态度:体会数学来源于生活、服务于生活的思想,培养学生分析、处理问题的能力。

教学重难点:

理解和掌握循环小数等概念,这些概念应通过学生试算、观察、讨论、归纳得出。

教学过程:

(一)创设情境,感知概念。

1、拍节奏游戏:

师:(1)老师拍节奏,你们能拍出来吗?

(2)你们拍的节奏为什么这么整齐?

(3)如果老师让你们按照这样的节奏,不断重复地一直拍下去,不叫停止,想一想,你们要拍多少次?

(4)像这样拍的次数是“有限的”还是“无限的”?

(5)你们刚才拍的次数呢?

2、找规律,猜图形。

多媒体出示:依次出现两个圆圈和一个三角形的图形。

当逐个出现至第十个图形,即第四组的第一个圆圈后,提问:

谁能猜到下面一个是什么图形呢?

你是怎样想出来呢?

出示第12个图形时,当学生猜出下面一个是三角形时,出现“。.。.。.”这个省略号表示什么意思?

对的,也就是说,是依次不断地重复出现这样的图形,请同学们想一想,这幅图中有多少组这样的图形呢?

学生说完后,教师板书(依次不断地重复出现,无限)

在实际生活中,还有那些现象是这样的?

一年有春夏秋冬,四季周而复始,每个星期有七天,每年有52个星期,开着的红绿灯,这些都是循环现象,其实,在数学王国里,就有一种小数,同学们想认识它吗?(想)这节课我们就来学习“循环小数”。板书课题,导入新课。

(二)展示过程 探究新知

1、循环小数

①组织学生自由选择下面各题,用竖式计算,并引导学生观察商的特点。

330÷1100 2÷6 1.23÷3

②自学例2 7.3 ÷2.2 除到商是五位小数时停止。

自学提示:(1)想一想,如果继续除下去,商会怎样?

(2)谁来猜一猜第6位小数是几?

(3)“等等”用什么符号来表示?能不能不用省略号?为什么?

③你能说说省略号表示什么?

2÷9=0.222…… 5÷12=0.4166……

9÷55=0.16363…… 2.4666…… 2.583583……

④你们还能举出这样的小数吗?

⑤概括并揭题。

像这些小数,就是我们今天要学习的“循环小数”。(板书课题)

谁来说一说什么叫“循环小数”?你们认为这句话里哪几个字比较重要?

⑥判断,请同学们判断哪几个数是循环小数,为什么?

0.999…… 5.02727…… 6.416416……

3.5656565656 3.1415926…… 0.123321……

2、循环节

“0.333……”中不断重复出现的数字是哪一个?在3.31818……数中,依次不断地重复出现的数字有个名称,请看书上第61页,什么叫循环节?请找出以上判断题中循环小数的循环节。

3、循环小数的简便记法

①记法和读法。

记法:把循环节写出两遍或三遍,是一种记法。简便记法:只写一个循环节,然后在循环节的首位和末尾数字上各记一个圆点,这个点叫循环节。

读法:5.327…… 五点三二七,二七循环。

②练习。

(1)写出3.333……的简便写法。

(2)写出判断题中循环小数的简便写法。

(三)巩固强化,拓展思维。

1、判断题。

(1)9.6666是循环小数。 ( )

(2)循环小数是无限小数。( )

(3)循环小数57.575575……记作57.57 ( )

(4)32.3232是有限小数也是循环小数。 ( )

2、把下面的循环小数圈起来。

4.3737 5.28383…… 5.314162…… 0.7563563……

3、小结:

如果用这是个什么样的循环小数?

循环节是什么?可以简写成什么?学生板演。

(四)课堂总结,鼓励质疑。

通过这堂课的学习,你们有那些收获?还有那些疑问?

教学重点 篇2

理解循环小数的意义,并能用循环小数的近似值表示除法的商.

板书设计 篇3

循环小数

一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断的重复出现,这样的小数叫做循环小数.

例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

130÷6=21。666≈21。67(千克)

答:大约用去21。67千克汽油.

《循环小数》教学设计 篇4

教学内容

教科书第101页,练习十九第6题及你知道吗

教学目标

使学生理解循环小数、有限小数、无限小数的概念,能用循环小数或循环小数的近似值表示除法中的商。知道有限小数和无限小数的区别。使学生受到辩证唯物主义启蒙教育。

教学构想

通过计算让学生做除法,通过实际计算,发现这些除法无论除到小数点后面多少位都除不尽。根据学生计算出的除法竖式,引导学生发现余数商的特点引出循环小数的概念。这是小数概念的又一次内涵扩展,要让学生认识到循环小数是一种无限小数。

教学过程

一、复习:

看谁算得快。

第一组:1.69÷26 58.3÷11

第二组:1÷3 58.6÷11

两个数相除时,会出现两种情况,第一组题都可以除尽,第二组都除不尽。

二、新知学习

1、继续通过计算探索

5÷3=1.666……

14÷37=0.378378……

25÷22=1.13636……

2、讨论:等号后面的商该怎样写呢合适?指导书写。

3、引出“循环小数”的概念

明白:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。

4、观察,进一步理解;无限小数、有限小数。

5、学习简便书写的方法,认识“循环节”

0.1818……=

89.5603420342……=

1.7290290……=

46.142857142857……=

6、让学生自主阅读,课本101页的“你知道吗?”交流阅读后的认识

三、巩固练习

1、下列哪些数是无限小数,哪些数是有限小数?哪些数是循环小数?

0.24242424,8.35489621……,5.737373……,6.21363636……,21.3658

2、把下列循环小数用简便的方法书写出来

5.252525……=

7.1478478……=

9.363363……=

3、练习十九 第6题。

《循环小数》教学设计 篇5

教学内容:

P27、28例8、例9、课文,P30练习五第1、2题。

教学目的:

1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。能用“四舍五入”法求循环小数的近似值,能用循环小数表示除法的商。

2、理解有限小数,无限小数的意义,扩展数的范围。

3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。

教学重点:

掌握循环小数、无限小数、有限小数的意义。

教学难点:

掌握循环小数的简便记法。

教学过程:

一、自主探索,获取新知

1、师谈活引入新课:

今天这节课老师给你们讲个故事:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:……这个故事讲得完吗?为什么讲不完呢?(板书:重复出现)

今天我们要学习的知识和这个故事有相同的地方,首先我们一起到运动场上去看一看吧。从图中你知道了什么?

全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。

2、初步感受循环小数的特点。

有些同学算着算着就停下了,发现了什么问题吗?(组织学生小组内交流)

可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。

师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢?你为什么使用省略号?省略号在这里表示什么意思?(师板书)

3、总结概括循环小数的意义

其他除法算式会不会出现这种情况呢?请同学们算一算:

28÷1878.6÷11

先计算,再说一说这些商的特点。如果继续除下去,商会怎样?能除尽吗?(请生板演计算结果)

观察例8、例9的三道题,你们发现他们的异同吗?(不同点:一个是小数“3”的循环,另一个是小数“4”和“5”的循环。相同点:

学生讨论后,指名汇报,教师抓住学生回答板书:

(1)小数部分,位数无限(或者除不尽)。

(2)有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。

4、巩固练习:下列哪些是循环小数?并说一说理由。

0.999……52.52525……4.1677……

3.212121……3.1415926……

学生评议。

5、介绍简便记法

除了用省略号来表示循环小数外,还可以用简便记法来表示。如5.333……还可以写作5.3,7.14545……还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525……可能出现问题52.5252.52552.52,师生共同辨析)

6、看书P27-28第一自然段,及了解“你知道吗?”

7、理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师两个数相除,如果不能得到整数商会有两种情况:1、商的小数部分位数是有限的,叫做有限小数;2、商的小数部分倍数是无限的,叫作无限小数。判断前面练习题中的小数哪些是有限小数?哪些是无限小数。

循环小数是有限小数,还是无限小数?为什么?

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

二、小结:这节课我们学习了哪些知识?能用自己的话说说你是怎样理解这些概念的吗?

三、巩固练习

用计算器算出商后,说出商是什么小数,依据是什么?是循环小数的要求用简便方法写出来。

19÷111.08÷3.313.25÷10.6

四、作业:P30第1、2题。

板书设计:

循环小数

(1)小数部分,位数无限(或者除不尽)。

(2)有的是一个数字不断重复出现,有的是两个……

5.333……=5.37.14545……=7.145

7、循环小数的练习

教学内容:

P30练习五第3—6题。

教学目的:

1、使学生进一步理解并循环小数、有限小数、无限小数的概念,掌握它们之间的联系和区别,并能正确区分。

2、培养学生总结规律的能力,使学生既长知识,又长智慧。

3、培养学生学习数学的积极情感。

教学重点:

进一步掌握相关概念并建立联系。

教学难点:

对循环小数的实际应用。

教学过程:

一、主动回顾,知识再现:上节课我们学习了什么知识?

二、单项训练,夯实基础:

1、进一步理解循环小数的概念。

下面哪些数是循环小数,如何判断的?

0.666……3.27676……301415926……

40.03666……100.78780.06262……

3.203203……70.26410.2142857142857……

《循环小数》教学设计 篇6

教学目标

1、使学生能正确区分有限小数和无限小数。

2、初步认识循环小数,会用循环小数表示除法的商,能用简便方法表示循环小数

3、培养学生发现问题、提出问题、解决问题的能力

4、培养学生积极的数学情感。

教学重难点

重点是循环小数的意义。

难点是掌握循环小数的简便记法。

教学工具

课件

教学过程

一、创设情境,感受循环

1、故事引入。老和尚和小和尚讲故事。.。.。.

2、学生举循环的生活现象的例子:

你们发现生活中还有哪些循环的现象?(学生讨论后回答)

(感受循环)像这样依次不断重复出现的现象,我们把它称为“循环”(板书)。在实际生活中,也有很多循环的现象,如一年有四季:春、夏、秋、冬,每年都是按照这样的规律依次不断重复出现。

师:(概括)这样的重复不仅出现在生活中,我们的数学学习中也经常会出现这种有趣的循环现象,你们想知道吗?下面我们一起来看这样一个问题。

多媒体课件出示P27王鹏赛跑的情景图。引导学生观察图意后,列出算式:400÷75

教师:请同学们用竖式计算这个算式,并指名一人板演,教师巡视。

师:像这样继续除下去,能除完吗?(可能永远也除不完。)怎样表示这种永远也除不完的商?这种商有些什么特点?就是这节课我们要研究的问题,也就是我们要认识的新朋友——循环小数。(板书课题:循环小数)

二、认识循环小数

1、初步认识循环小数。

师:刚才我们在笔算过程中发现这个算式有二个特点:

①余数重复出现“25”;

②商的小数部分连续地重复出现“3”。为什么商的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?(引导说出:当余数重复出现时,商就要重复出现;商是随余数重复出现才重复出现的。)

如果将400÷75继续除下去,猜一猜,商的小数部分第10位数字是几?第100位数字呢?(学生回答)

师:那么我们怎样表示400÷75的商呢?(教师引导学生说出:可以用省略号来表示永远除不尽的商。教师随着学生的回答板书:400÷75=5.333…,教师板书后加以说明:写这样的商一般要把重复出现的数字至少写两组再写省略号。)

师:我们所说的重复也叫作循环,像5.333…这样小数部分有一个数字依次不断地重复出现的小数,就叫做循环小数。

2、进一步认识循环小数。

师:下面我们继续来研究循环小数,请同学们用竖式计算:28÷18= 78.6÷11=

(让学生独立计算,教师巡视。)

订正时教师引导学生比较5.333…和1.555…,7.14545…

师:你们觉得这三个循环小数有什么不同?(课件出示: 5.333…商的小数部分从第一位起一个数字依次不断地重复出现; 1.555…商的小数部分从第一位起一个数字依次不断地重复出现; 7.14545…商的小数部分从第二位起二个数字依次不断地重复出现。)

师提问:你们觉得像这样的算式除到哪一位就可以不除了?(引导学生说出:只要余数重复了,就可以不除了。因为像这样的算式余数循环,商也会跟着循环。)

师小结:你们说对了!像5.333…和7.14545…1.555…,这样的小数都是循环小数。你们能像这样写出几个循环小数吗?(请大家在1分钟内写出几个循环小数,看谁写得又对又多!)

讨论:究竟什么样的数就叫循环小数呢?(让学生尝试归纳什么叫循环小数,指名请几个学生说说,然后让学生打开课本第28页看看书上是怎么说的。学生齐读概念。学生读完概念后,教师在展示台上重点解释“循环小数”中的关键词。)

3、分析比较:判断下列各数哪些是循环小数,哪些不是。

3.4666…( )2.354354( )1.4555( )

0.24382438…( )0.44222…( )

4、继续探索:依次不断重复出现的数字是?

3.4666…( )0.24382438…( )0.44222…( )

小结:一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。

师:请同学们认真阅读课本第28页的“你知道吗?”,然后回答,你了解到了什么?你能结合一个循环小数给大家讲讲吗?(指名学生回答,集体交流)

教师结合具体的循环小数强调循环节的简便写法:写循环数的时候,为了简便,小数的循环部分只写出第一个循环节,并在这个循环节的首位和末位上面各写上一个圆点。

如:5.333… 写作:5.3, 读作:五点三,三循环

1.555… 写作:1.5,,读作:一点五,五循环

7.14545… 写作:7.145, 读作:七点一四五,四五循环

5、建立有限小数和无限小数的概念

大家想一想,两数两除,如果不能得到整数商,所得的商会有哪些情况?

请大家计算:15÷16= 1.5÷7=

结合学生的交流,老师引导学生归纳,像0.9375这样的小数,小数部分的位数是有限的小数叫做有限小数;像5.333…这样的小数,小数部分的位数是无限的小数叫做无限小数。(让学生开火车举例说说有限小数和无限小数,各举一个)

6、辨一辨:所有的循环小数都是无限小数吗?

三、应用知识,解决问题:

1、写一写:根据循环小数的一般写法,写出它的简便写法;或者根据它的简便写法,写出它的一般写法。

7.307= 3.1435= 2.0505 3.143535…=

2、判断题:

(1)0.7777是循环小数。( )

(2)1.3>1.333 ( )

(3)2.07=2.07 ( )

(4)13.243243…可写作13.24。 ( )

3、比较大小。

四、全课总结:

通过今天的学习你有哪些收获?(教师结合板书进行小结)

循环小数教案 篇7

教学目标

1知识与技能:

【1】使学生理解循环小数、有限小数、无限小数的意义。

【2】掌握循环小数的两种表示方法。

2过程与方法:

经历循环小数的认识过程,体验探究发现的学习方法

3情感、态度与价值观:

让学生感受数学的美与乐趣,激发探究的欲望,初步渗透集合思想。

教学重难点

1 教学重点:

理解循环小数、有限小数、无限小数的意义,掌握循环小数的简便记法。

2 教学难点:

用循环小数表示除法算式的商。

教学工具

多媒体设备

教学过程

教学过程设计

1 引入

故事:从前有座山,山里有座庙,庙里有个老和尚给小和尚讲故事,讲什么呢?从前有座山……

引出课题——循环小数

2 新知探究

(一)创设情境。

1.课件出示:

(1)学生描述场景信息,根据信息,你能列出什么算式呢?400÷75

(2)学生独立计算,指名板演。引导学生思考并回答:

①让学生通过实际计算,发现这道题无论除到小数点后面多少位,都除不尽。通过竖式计算,你发现了什么问题?(除不尽)

②这道题商的小数部分和余数有什么规律和特点?(商的小数部分不断的重复出现3,而余数重复不断的出现25)

③如果我们不断地除下去,它的商是多少?比如第5位是多少?第20位商是多少?第100位商是多少?(不管是哪一位,只要余数重复出现25,商就会重复出现3。)这样的除法算出的商应该表示为:400÷75=5.333……

总结特点:

(1)余数重复出现25。

(2)商的小数部分重复出现“3”。

(3)永远也除不完,商是无限的。

2、先计算,再说一说这些商的特点。

28÷18= 78.6÷11=

(1)先让学生独立列竖式计算。

(2)观察这道题,有什么相同点?(这两题的相同点是总也除不尽。)

这两道题的不同点是什么?(前一道题商中是一个数字“5”不断重复出现,而后一道题,商中二个数字”6 3”在依次不断重复出现。)

观察总结引出概念:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。像上面的5.333 ooo和7.14545 ooo都是循环小数。

3.自学内容:

一个循环小数的小数部分,依次重复出现的数字,叫做循环小数的循环节。例如:

5.333 ooo的循环节是3。

7.14545 ooo的循环节是45。

6.9258258 ooo的循环节是258。

写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。例如:

5.333 …写作5.3。

6.9258258…写作6.9258。

小数部分的位数是有限的小数,叫做有限小数。例如,0.937。

小数部分的位数是无限的小数,叫做无限小数。例如,0.2142857就是一个无限小数。

3 学以致用

(一)基础练习

1. 判断下列各数哪些是循环小数?哪些不是?

3.4666… (是) 2.35435 (不是)

1.4555 (不是) 0.24382438… (是)

2.58080 (不是) 0.44222… (是)

8.4747… (是)

2.填空:

64.2454545…

2.1313…

7.87

5.901436…

0.666…

9.3737

有限小数:7.87, 9.3737

无限小数:64.2454545…, 2.1313…, 5.901436…, 0.666…

循环小数:64.2454545…, 2.1313…0.666…

3.下列小数的循环节是什么?

3.4666… ( 6 )

0.2382438… (2438)

8.4747… ( 47 )

0.44222… ( 2 )

4. 用简便形式写出下面的循环小数。

5.写出下列循环小数的近似值:(保留三位小数)

6.判断。

(1)一个小数从小数部分的某一位起,一个数字或几个数字重复出现,这样的小数叫循环小数。( √ )

(2)9.666是循环小数。( × )

(3)循环小数是无限小数。 ( √ )

(4)3232.32是有限小数,也是循环小数。 ( × )

(二)综合提升练习

7.用“四舍五入法”写出下表中各循环小数的近似数

8、比较下列小数的大小

9.如果用A 、B、 C 表示不同的三个数字,如:A.BBCBBCoooooo可以简写成什么数?这个小数的小数部分第一百位是什么?

100÷3=33oooooo1

所以这个小数的小数部分第一百位是B。

课后小结

一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。

小数部分依次不断重复的一个或几个数字,叫做这个循环小数的循环节。

板书

一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。

小数部分依次不断重复的一个或几个数字,叫做这个循环小数的循环节。

《循环小数》教学设计 篇8

教学要求:

1、使学生理解循环小数、有限小数、无限小数的意义,通过求商,使学生感受到循环小数的特点,掌握循环小数的两种表示方法,会判断循环小数、有限小数、无限小数。

2、培养学生发现问题、提出问题、解决问题的能力。提高学生的观察、比较、分析、判断、抽象概括能力及自学能力。

3、感受数学的美与乐趣,渗透集合思想,进行“对立统一”观点和爱国教育。

教学重点:

理解循环小数的意义

教学难点:

怎样判断除得的商是循环小数

教学过程:

一、创设情境导入新课

师:同学们,我们做个拍手游戏好吗?

(1)先听老师拍手:“啪啪啪”,你们会按照这个节奏“依次不断的重复”拍下去吗?

提问:拍下去能拍完吗

(2)再听老师拍手:“啪,啪啪”,你们能接着拍吗?

提问;这样依次不断的拍下去,能拍完吗?再拍下去,还是出现什么节奏?

教师边板书便叙述:“依次不断的重复出现”也就是“循环”出现、

(3)举例说出日常生活中遇到的“循环”现象、

生1:;体育课上老师喊的:“一二一、一二一、一二一……”的口令

生2:太阳的东升西落

生3:每个星期,星期日为每个星期的第一天,然后循环着日、一、二、三、四、五、六。

生4:一年之季在于春,每年都循环着春、夏、秋、冬

生5:火车滚动的声音,“咔嚓,咔嚓……

生6;人的血液流动

师叙:看来生活中这种循环现象还是很多的。其实,数学中也存在这种有趣的循环现象,你们想知道吗?好,这节课咱们就一起来探索发现数学中的循环现象。

二、探究新知

(一)认识循环小数

1、示例7、例8

例71÷3例858.6÷11

师:请左边两排同学完成例7,右边两排同学完成例8,看哪排同学完成的快又好。

学生完成后教师提问

(1)从计算中你发现了什么?

生1:计算1÷3时,商的小数部分重复出现“3”,余数重复出现“1”

师追问:商为什么会重复出现”3”呢?(因为余数重复出现“1”,所以商就重复出现“3”)

生2:计算58.6÷11时,商的小数部分重复出现“27”,余数重复出现3和8

教师追问:商又为什么重复出现“27”呢?(因为余数重复出现3和8,所以商就重复出现“27”)

(2)这两个算式能除尽吗?再继续除下去会怎样?(商还是不断地重复出现“3”或“27”)

(3)1÷3的商重复出现“3”,表示商中有多少个“3”?(无数个)

那么1÷3的商应该怎样表示呢?(用省略号)

板书:1÷3=0.33……

(4)58.6÷11的商重复出现“27”,说明什么?(商中有无数个“27”)

那么,58.6÷11的商应该怎样表示呢?

板书:58.6÷11=5.32727……

2、归纳概括循环小数的概念

提问:

(1)谁能照样子说一个类似的小数

如:0.61555……2.558558……

(2)看上面的几个小数,,不断重复出现的数字在小数的那一部分了?

板书:小数部分

(4)请同学们认真的观察以上几个小数的小数部分,看看它们重复出现的数字是从小数部分的第几位起的?重复出现的数字是什么?重复出现的数字各有几个?

学生边回答,教师边板书:

0.33……从十分位起1个数字3

5.32727……从百分位起2个数字27

0.6155……从千分位起1个数字5

2.558558……从十分位起3个数字558

师:同学们想一想,有没有可能从小数部分的第四位起、第五位起依次不断地重复一个或者几个数字呢?(有)

(5)那么,“依次不断地重复出现的数字”到底是从小数部分的哪一位起呢?谁能用三个字概括?(某一位)

板书:从小数部分的某一位起

(6)重复出现的数字有一个的,两个的,三个的,还有多个的,那么我们就概括成“一个数字或者几个数字”(板书)

(7)从以上例子中,我们可以看出数学中的循环现象了,那么,数学中的这种循环现象发生在什么数中呢?

板书:小数

(8)谁能根据以上小数的特征,给这些小数取个合适的名字呢?

板书:循环小数

(9)谁能把教师的板书连起来读一下?(教师边板书边补写“这样的小数叫做循环小数”)

定义:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。

师:这就是我们今天要学习的“循环小数”

板书课题:循环小数

像0.333……5.32727……等都是循环小数

3、理解概念

提问:

(!)你怎样理解“依次不断的重复出现”?

(2)你能再说一个循环小数吗?

(3)判断:下面哪个数是循环小数?那个不是循环小数?为什么?

①10.979710.9797……

②8.567567……3.1415926……

③0.192921.5353……

④3.0878.4666……2.142857142857……

4、循环小数的简写

(1)师:如果每个循环小数都这样写,你觉得怎么样?你有什么想法吗?(想简写)

(2)介绍“循环节”

师:一个循环小数的小数部分,依次不断的重复出现的数字,叫做这个循环小数的循环节。

(3)问:0.333……重复出现的数字是几?(3)

5.32727……重复出现的数字是几?(27)

它们的循环节各是多少?(3或27)

(4)请同学们说出翻板上几个循环小数的循环节

(5)介绍简写方法

写循环小数的时候,为了简便,整数部分和小数部分中不循环的部分照写下来,循环的部分只写出第一个循环节,并在这个循环节的首位和末尾的数字上面各记一个小圆点。

如;0.333……写作

5.32727……写作

6.416416……写作

(6)练习,用简便形式写出下面的循环小数

1.746746……0.105353……312.222……

四、综合练习

1、判断对错

(1)一个小数,从某一位起,一个数字或者几个数字依次不断的重复出现,这样的小数叫做循环小数。()

(2)9.4747是循环小数()

(3)是循环小数()

(4)2.07=()

(5)3.2456456……=()

(6)循环小数13.243243……可写作()

(7)>1.333()

五、全课小结

这节课我们通过分析、发现,原来数学王国中也有循环现象,那就是循环小数(齐读循环小数概念)。通过这节课的学习,你有什么收获?

《循环小数》教学设计 篇9

教学目的:

1、学生理解循环小数、有限小数、无限小数的意义,掌握循环小数的两种表示法,会判断循环小数、有限小数、无限小数,能比较熟练地求循环小数的近似值。

2、培养学生发现问题、提出问题、解决问题的能力,提高学生的观察、比较、分析、判断、抽象概括能力及探索规律的能力。

3、学生感受数学的美与乐趣,激发探究的欲望。

教学重点:

理解循环小数的意义。

教学难点:

怎样判断除得的商是循环小数。

教学过程:

一、动作游戏,过度铺垫

1、请一名学生做游戏,根据老师的指令,用手指向部位。(眼睛、鼻子、嘴巴、耳朵;眼睛鼻子嘴巴耳朵……)结合动作口令,请学生说一说,游戏过程有什么特点。(理解关键次:依次、不断、重复出现)用游戏动作作铺垫,激发兴趣,使得学生迅速进入学习的境地,初步感知这节课的重要性语言,生动形象的理解无限、依次、重复等词语)

2、生活中,还有哪些现象,象我们刚才的游戏那样,依照一定的次序不断重复出现的现象的呢?

请学生结合自己的生活实际找一找。(例如学生的回答:四季春夏秋冬的更替、一年12个月的交替、每周星期数、老和尚讲故事等)

3、以此为契机引入新内容的探索,小数中也有这样有趣的现象,你想知道么?引入并板书课题:循环小数。

二新知探索

1、课件出示情景图。例题1:王鹏跑400米只用了75秒,平均每秒跑多少米?

(1)请学生说出已知条件和要求的问题。

(2)列算式400÷75,讲明列式理由(速度=路程÷时间)

(3)请学生在练习本上试算。教师行间巡视。

(4)当学生露出疑问的神情,窃窃私语交流时,及时让学生停下来,说一说自己的疑问,也就是数谈一谈计算中发现算式的特点。余数25不断的重复出现,商一直商3.那么算式的结果怎样写呢?请学生说一说:可以写作5.333.。.。.。,多写一个重复的数字3然后点上省略号,表示后面还有无数个3.

2、深入探索,说明竖式计算中的特点。

(1)出示练习:28÷18= 78.6÷11=

(2)请学生观察算式中特点:第一个算式余数不断重复出现10,因此商不断重复出现5,所以商是1.55……;第二个算式余数5和6依次不断的重复出现,因此商4和5也依次不断的重复出现,所以商是7.14545……。

(3)观察写出的3个小数,像这样的小数就叫做循环小数。那么什么样的数叫做循环小数呢?请小组内集思广益交流一下。

(4)反馈交流内容:

a生:有一个数或者多个数不断的重复出现。

B生:小数部分有一个数或者几个数字不断的重复出现。

C生:小数部分有一个数字或者几个数字依次不断的重复出现,这样的小数叫做循环小数。

师:刚才同学们都谈到了依次、不断、重复出现的数字,和课本上循环小数的科学定义进行比较。强调概念重点的词语,加重语气诵读两遍。

在实物投影器上用康熙词典展示“循环”词语的意思。(事物周而复始的运动和变化,叫做循环)

(5)开展写循环小数的比赛,比一比,一分钟谁写的个数多,种类也多。

教师行间巡视,挑拣出现的有典型错误的比赛内容,充分利用课堂生成性资源。比如挑选类似性质的题目:3.2828,5.1444……,2.0141526…,5.8105105……,正确的点头,错误的摇头,突出自己的课堂活跃氛围。

[让学生在尝试练习中认识循环小数,发现当两个数相除出现循环小数时商和余数的规律。让学生亲历知识形成的过程,有利于学生形成循环小数的概念。]

三、巩固练习,发散思维。

(1)请同学们判断下面哪几个数是循环小数,为什么?(课件显示)

0.999…… 3.1415926…… 0.547745…… 3.212121

5.02727…… 6.416416……

这些循环小数能不能简便写法,请自学课本,了解循环节和简便写法。只写出一个循环节,在循环节的首位和末位上面点上小圆点。

(2)将上面的循环小数用简便写法记录下来。

(3)式计算下面各题,哪些是循环小数?将循环小数表示出来。(课本29页第1题。)

5.7÷9 5÷8 6.64÷3.3

(4)跳起来摘葡萄。

循环小数0.48536536……的小数部分第60位上的'数是几?第100位上的数呢?

四、从质疑问难中,畅谈收获

通过这节课的学习,你有什么收获?或什么疑问?

《循环小数教学反思

一、关注学生已有的生活经验和知识背景——为学生架起知识迁移的桥梁《数学课程标准》强调:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。”新课开始,我用动作游戏的形式的循环现象为导入点,让学生体验“循环”的意思,从而说说生活中的“循环现象”,将生活与数学融合在一起,使学生真正理解了“循环”含义,从而为进一步探究“循环小数”的意义及写法架起桥梁。

二关注学生发展——给学生提供自主合作探究的空间

《数学课程标准》指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。数学学习不应是简单个体接受知识的过程,而是一个主体对自己感兴趣的且是现实的生活性主题的探究与发展的过程。在新课中,我首先从生活中的现象入手,计算王鹏每秒速度,使主动探究数学中的问题,通过让学生笔算、不断地观察、分析、比较、讨论等学习方式充分调动学生多种感官的参与,给学生提供自主合作探究的空间,让学生全面参与新知的发生、发展和形成过程,使学生真正体验到探究的乐趣和做数学的价值。

(三)关注学生实际应用——让学生在练习中巩固、消化。

从认识的过程来说,形成概念是从感性认识上升到理性认识的过程,即从个别的事例总结出一般性的规律;巩固概念则是识记概念和保持概念的过程,是加深理解和灵活运用概念的过程,即从一般到个别的过程。好的练习设计能够巩固学生的知识,进而延伸知识,培养学生的创新意识。教学完新知后,根据由浅入深的原则,力求做到人人学有必须的数学,我设计了三个不同层次的练习,使不同层面的学生都学有所获。第一题是基本题,是通过从数字乐园中,找循环小数。第二题综合题,通过根据实际情况,取循环小数的近似值,加强知识间的联系,培养实际应用能力。最后一道是发展题,一方面让学生研究循环小数的规律,另一方面激发学生的学习兴趣。

这节课所可以精进的空间还很大,在闲暇时间还会进一步使这节课的教学设计更加符合新课标的教学理念,体现自身的教学风格。

一键复制全文保存为WORD