《平方差公式》教学设计【优秀7篇】

作为一名人民教师,通常需要准备好一份教案,教案有利于教学水平的提高,有助于教研活动的开展。那么你有了解过教案吗?下面是小编精心为大家整理的《平方差公式》教学设计【优秀7篇】,如果能帮助到您,小编的一切努力都是值得的。

初中数学平方差公式教案 篇1

教学目标

1、使学生理解和掌握平方差公式,并会用公式进行计算;

2、注意培养学生分析、综合和抽象、概括以及运算能力。

教学重点和难点

重点:平方差公式的应用。

难点:用公式的结构特征判断题目能否使用公式。

教学过程设计

一、师生共同研究平方差公式

我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。

让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:

两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)

继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。

在此基础上,让学生用语言叙述公式。

二、运用举例 变式练习

例1 计算(1+2x)(1-2x)。

解:(1+2x)(1-2x)

=12-(2x)2

=1-4x2.

教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。

例2 计算(b2+2a3)(2a3-b2)。

解:(b2+2a3)(2a3-b2)

=(2a3+b2)(2a3-b2)

=(2a3)2-(b2)2

=4a6-b4.

教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。

课堂练习

运用平方差公式计算:

(l)(x+a)(x-a); (2)(m+n)(m-n);

(3)(a+3b)(a-3b); (4)(1-5y)(l+5y)。

例3 计算(-4a-1)(-4a+1)。

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。

课堂练习

1、口答下列各题:

(l)(-a+b)(a+b); (2)(a-b)(b+a);

(3)(-a-b)(-a+b); (4)(a-b)(-a-b)。

2、计算下列各题:

(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。

三、小结

1、什么是平方差公式?

2、运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。

四、作业

1、运用平方差公式计算:

(l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);

(5)(2x3+15)(2x3-15); (6)(0.3x-0.l)(0.3x+l);

《平方差公式》的优秀教学设计 篇2

教学目的

进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

教学重点和难点:公式的应用及推广。

教学过程:

一、复习提问

1、(1)用较简单的代数式表示下图纸片的面积。

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

讲评要点:

沿hd、gd裁开均可,但一定要让学生在裁开之前知道

hd=bc=gd=fe=a-b,

这样裁开后才能重新拼成一个矩形。希望推出公式:

a2-b2=(a+b)(a-b)

2、(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异。

说明:平方差公式的数学表达式在使用上有三个优点。

(1)公式具体,易于理解;

(2)公式的特征也表现得突出,易于初学的人“套用”;

(3)形式简洁。但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解。

依照公式的文字表达式可写出下面两个正确的式子:

经对比,可以让人们体会到公式的文字表达式抽象、准确、概括。因而也就“欠”明确(如结果不知是谁与谁的平方差)。故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活。

3、判断正误:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)

二、新课

例1 运用平方差公式计算:

(1)102×98; (2)(y+2)(y-2)(y2+4)。

解:(1)102×98 (2)(y+2)(y-2)(y2+4)

=(100+2)(100-2) =(y2-4)(y2+4)

=1002-22=10000-4 =(y2)2-42=y4-16。

=9996;

2、运用平方差公式计算:

(1)103×97; (2)(x+3)(x-3)(x2+9);

(3)59.8×60.2; (4)(x- )(x2+ )(x+ )。

平方差公式教学反思 篇3

平方差公式的教学已经是好几次了,旧教材总是定向于代数方法,新课程理念同几何意义探究,这也是对教学者的一次挑战,通过教学,我从中领会到它所蕴含的新的教学理念,新的教学方式和方法。

1、在教学设计时应提供充分探索与交流的空间,使学生进一步经历观察,实验、猜测、推理、交流、反思等活动,我在设计中让学生从计算花圃面积入手,要求学生找出不同的计算方法,学生欣然接受了挑战,通过交流,给出了两种方法,继而通过观察发现了面积的求法与乘法公式之间的吻合,激发了学生学习兴趣的同时也激活了学生的思维,所以这个探究过程是很有效的。

2、我知道培养学生数形结合思想方法和能力的重要性,通过几何意义说明平方差方式的探究过程,学生可以切实感受到两者之间的联系,学会一些探究的基本方法与思路,并体会到数学证明的灵巧间法与和谐美是很有必要的。

3、加强师生之间的活动也是必要的。在活动中,通过我的组织、引导和鼓励下,学生不断地思考和探究,并积极地进行交流,使活动有序进行,我始终以平等、欣赏、尊重的态度参与到学生活动中,营造出了一个和谐,宽松的教学环境。

《平方差公式》教学反思 篇4

教学目的

进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

教学重点和难点:

公式的应用及推广。

教学过程:

一、复习提问

1、(1)用较简单的代数式表示下图纸片的面积。

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

讲评要点:

沿hd、gd裁开均可,但一定要让学生在裁开之前知道

hd=bc=gd=fe=a-b,

这样裁开后才能重新拼成一个矩形。希望推出公式:

a2-b2=(a+b)(a-b)

2、(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异。

说明:平方差公式的数学表达式在使用上有三个优点:

(1)公式具体,易于理解;

(2)公式的特征也表现得突出,易于初学的人“套用”;

(3)形式简洁。但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解。

依照公式的文字表达式可写出下面两个正确的式子:

经对比,可以让人们体会到公式的文字表达式抽象、准确、概括。因而也就“欠”明确(如结果不知是谁与谁的平方差)。故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活。

3、判断正误:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)

《平方差公式》优质教学设计 例 篇5

1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)

2.掌握平方差公式的应用.(重点、难点)

一、情境导入

1、教师引导学生回忆多项式与多项式相乘的法则.

学生积极举手回答.

多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.

2、教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.

二、合作探究

探究点:平方差公式

【类型一】 直接应用平方差公式进行计算

利用平方差公式计算:

(1)(3x-5)(3x+5);

(2)(-2a-b)(b-2a);

(3)(-7m+8n)(-8n-7m);

(4)(x-2)(x+2)(x2+4).

解析:直接利用平方差公式进行计算即可.

解:(1)(3x-5)(3x+5)=(3x)2-52=9x2-25;

(2)(-2a-b)(b-2a)=(-2a)2-b2=4a2-b2;

(3)(-7m+8n)(-8n-7m)=(-7m)2-(8n)2=49m2-64n2;

(4)(x-2)(x+2)(x2+4)=(x2-4)(x2+4)=x4-16.

方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a和b可以是具体的数,也可以是单项式或多项式.

变式训练:见《学练优》本课时练习“课堂达标训练”第1题

【类型二】 应用平方差公式进行简便运算

利用平方差公式计算:

(1)2013×1923;  (2)13.2×12.8.

解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.

解:(1)2013×1923=(20+13)×(20-13)=400-19=39989;

(2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.

方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.

变式训练:见《学练优》本课时练习“课堂达标训练”第13题

【类型三】 运用平方差公式进行化简求值

先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.

解析:利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.

解:(2x-y)(y+2x)-(2y+x)(2y-x)=4x2-y2-(4y2-x2)=4x2-y2-4y2+x2=5x2-5y2.当x=1,y=2时,原式=5×12-5×22=-15.

方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.

变式训练:见《学练优》本课时练习“课堂达标训练”第14题

【类型四】 平方差公式的几何背景

如图①,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.

解析:∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b),即可以验证的乘法公式为(a+b)(a-b)=a2-b2.

方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.

变式训练:见《学练优》本课时练习“课堂达标训练”第9题

【类型五】 平方差公式的实际应用

王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?

解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.

解:李大妈吃亏了,理由如下:原正方形的面积为a2,改变边长后面积为(a+4)(a-4)=a2-16.∵a2>a2-16,∴李大妈吃亏了.

方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.

三、板书设计

1.平方差公式

两数和与这两数差的积,等于它们的平方差.即(a+b)(a-b)=a2-b2.

2.平方差公式的运用

学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成。

《平方差公式》教学反思 篇6

平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的培养。最后经过师生的共同努力,得出了平方差公式以及公式的`特征。

在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。

最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。

本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。

平方差公式教学反思 篇7

平方差公式与完全平方公式是初中数学代数学知识方面应用最广泛的公式,也是学生代数运算的基础公式,在今后的数学学习过程中,更能体现其重要性,所以这两个公式的教学要求很高,需要每一名学生都必须熟练掌握这两个公式,并因此可以灵活运用公式进行因式分解和分解因式,解决很多代数问题。

如同勾股定理在全世界数学基础教学中地位显著,全世界各地数学教科书都要求学生掌握一样,平方差公式与完全平方公式也是全世界以致全国各地教科书都必讲必学的内容之一,作为整式的乘法公式,人教版教科书把平方差公式与完全平方公式安排在整式的乘法这一章的第二节,在第一节内容上先让学生掌握整式乘法的各项法则,当学生熟练掌握多项式与多项式的乘法后,再由此让学生来学生我们的乘法公式,本节内容分两部分,先介绍平方差公式,再介绍完全平方公式。

在学生熟练掌握多项式与多项式的乘法后,开始介绍平方差公式,教科书上是由找规律开始,让学生利用多项式乘法法则计算,从而发现平方差公式,由找规律得出公式的猜想,再介绍平方差公式的几何面积验证方法,来验证公式猜想的正确性,从而由代数探究及几何论证来得出平方差公式,得出公式后再来实际应用。

我一直严格要求自己,认真备教材,当然也认真备学生,使课堂教学符合学生的实际需要。学生基础较差,教学内容要求生动、易学易懂,让学生能在活动教学中进行简单探究从而掌握好基础知识。,我认真准备,仔细研读教材,精心制作出课件和教案,按教科书的教学顺序和过程,既安排学生计算上的运算探究猜想,又安排几何实践剪纸法,利用面积来验证公式。我从实际问题出发,给出动手操作的实际几何问题引出本课,得出平方差公式的猜想,让学生动手实践,数形结合得出平方差公式,在利用多项式的乘法法则计算验证,最后辨析、应用,让学生熟悉平方差公式,最后应用提高,给出实际生活中的一个问题,利用平方差公式计算较大的数字,让学生明白学习,平方差公式不但可以在实际生活中运用,而且还可以简便计算,激发学生对平方差公式学习的兴趣,从而很好地掌握好平方差公式。最后再进行小结,反馈。

一键复制全文保存为WORD
相关文章