在当今社会生活中,课堂教学是重要的工作之一,反思过去,是为了以后。反思应该怎么写才好呢?下面是小编精心为大家整理的《梯形的面积》教学设计(优秀10篇),您的肯定与分享是对小编最大的鼓励。
教学内容:教科书第80~81页的内容,完成第81页上”做一做“和练习十九的第1~4题。
教学目的:
1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教具准备:
1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。
2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。
3、学生将教科书第147页上面的两个梯形剪下来。
教学过程:
一、复习。
出示三角形图。
问:三角形的面积怎样求?
这个三角形的面积是多少?
三角形的面积计算公式我们是怎样推导出来的?
怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)
师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)
二、新课。
1.教学梯形面积的计算公式。
出示教科书第80页上面的梯形图。
问:这个图形是什么形?(梯形)
师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。
问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)
教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。
问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)
两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)
平行四边形的底等于什么?(等于梯形的上底、下底之和)
平行四边形的高和梯形的高有什么关系?(相等)
平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)
一个梯形的面积怎样算?(提示学生回答,
教师板书:(3+5)×4÷2
=8×4÷2
=32÷2
=16(平方厘米)
师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)
问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)
平行四边形的高是什么?(就是梯形的高)
板书:
平行四边形的面积=(上底+下底)×高
梯形的面积=(上底+下底)×高÷2
如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:
S=(a+b)×h÷2
问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)
2.应用出的梯形面积公式计算梯形面积。
(1)出示第81页例题。
指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。
问:这个梯形的上底是多少?下底呢?
这个梯形的高是多少?
梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)
(2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。
三、巩固练习。
练习十九第1、2题。
四、作业。
练习十九第3、4题。
课后:
一、学情分析
学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。
因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。
二、教材分析
"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。
三、教学目标设计
1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。
2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。
3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。
四、教学重点难点
教学重点
1.理解并掌握梯形的面积计算公式。
2.运用梯形的面积计算公式解决问题。
教学难点
梯形面积公式的推导过程。
五、教学策略设计
我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历"发现问题--作出假设--进行验证--实践应用"的"再创造"过程,让学生在数学的"再创造"过程中实现对新知的意义建构,解决新问题,获得新发展。
六、教学过程设计
教学环节一
一、汇报预习的成果
(预习单)1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?
2、对于梯形,你们已经知道了什么?
3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么?
4、如何推导梯形的面积计算公式?谈谈你的想法。
学生汇报前三个:
生1:我发现任何梯形都可以分成两个三角形。
生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。
师:善于观察,勇于实践,大家才会有如此丰富的发现。这节课,我们将在此基础上进一步研究"梯形的面积计算"。
(揭示课题)
设计意图
引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。
教学环节二
二、"假设--实验--验证",引导学生体验数学知识"再创造"的。过程。
师:汇报预习单第4个问题。如何推导梯形的面积计算公式?谈谈你的初步设想。
(学生分组交流。教师深入学生中倾听,并作必要的启发和引导)
生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然后再来推导?
生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导?
生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。
设计意图
交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。这对教师如何引导学生进行随后的"再创造"活动起着重要的作用。
教学环节
三、应用知识,自主探究
师:同学们是不是都有自己的想法了,想不想马上动手试试?
(学生独立或合作尝试转化。教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)
教学环节四
设计意图
对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。
四、汇报展示
师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。
生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。
师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。
设计意图:
引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。
教学环节
五、在实践应用中拓展、延续数学知识的"再创造"。
师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。
(出示基本练习)测量数据,并计算出这些梯形的面积。
设计意图:
学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。
六、作业设计
师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。如果请你来设计,你觉得怎样设计比较合理?画出设计图,并预算出每一个花坛的占地面积。
(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)
实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。
七、板书设计
梯形的面积
梯形的面积=(上底+下底)×高÷2转化
S梯形=(a+b)×h÷2(学生的方法展示)
八、预设效果
本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。
九、课外知识的准备
了解多种转化的方法。
《梯形的面积》这节课的内容是在学生学习习近平行四边形面积、三角形面积计算的基础上进行教学的,主要是引导学生通过梯形面积公式的推导去理解和掌握梯形面积计算公式,因此,在教学中我注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
一、动手操作,感知梯形面积公式的推导过程
在教学中,我让学生动手操作,分别将两个完全一样的梯形拼成一个平行四边形;一个梯形分割成两个三角形和一个梯形沿高的中线分割成两个梯形三种方法,并比较每个梯形与所拼成的图形各部分间的关系,然后学生同时在操作中向学生渗透切割、平移的方法,让学生体验和感知梯形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。但课堂上学生活动的时间不够多,这是本课中的缺憾。
二、引导学生发现问题、思考问题,培养合作精神
在这节课中,探讨梯形面积公式中的“除以2”是怎么来的?在探讨这个问题时,我采用小组讨论的方式,在讨论中发现问题,解决问题,这样既培养学生的合作精神,又活跃课堂气氛。学生对公式记得也牢固。
三、应用公式解决实际问题
新课程非常重视学生在活动中身临其境的体验。让学生运用所学梯形面积公式解决实际问题。这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。
此外,在这节课的教学过程中,我发现了在教学中存在不足。例如学生在回答问题时,采用齐答的办法,为了节省时间没有彻底了解中下学生的掌握情况。今后要注意在教学中避免运用这种方法。还有个别同学发表了自己的。错误想法,我就直接给驳回,没有让学生自己找到自身的错误所在。
教学内容:北师大版五上第五单元《点阵中的规律》P82-83
教学目标:
1、在活动中,通过观察前后图形中点的变化规律,推理得出后续图形中点的数量,体会到图形与数的联系,感受数学均衡美。
2、培养学生推理、观察、概括能力。
教学重点:引导学生发现与概括规律。
教学难点:概括规律。
教学过程:
一、认识点阵:
师:同学们,你们都知道自然数分成奇数和偶数,最早进行这样的划分的数学家叫毕达哥拉斯,他非常喜欢数学,他研究数学可不是为了考试和分数,就是因为喜欢,他对研究数的特征非常着迷,研究方法也很独特,他是把数想象成小石子或小圆点,摆成图形来研究数。今天我们也来看看吸引毕达哥拉斯的“点阵”和数之间到底有什么样的联系。
(板书课题:点阵中的规律)。
二、研究点阵:
(一)出示点阵,提出问题
····
·······
·········
··········
师:这就是他当时研究过的一组正方形点阵,有规律吗?如果由你来摆这组正方形点阵,你想怎么摆呢?
(二)探索点阵中的规律
1、研究正方形点阵的规律
(1)观察这些正方形点阵,我们可以得到哪些数?拿出草稿本思考并写下来。
(2)你能写出算式表示点阵中点的个数吗?
以小组为单位,讨论交流,巡视学生完成情况。
(3)小组汇报研究结果。
(4)尝试画出第五个图形,延伸到第六个图形。
展示学生成果。
(5)还有不同的算式表示这些点数吗?
学生思考。
(6)如果学生回答不出,教师演示摆的方法,从摆法上引导学生用算式表示点数。
·····
·····
·····
·····
·····
(7):摆法不同,得到的算式也不相同,每组算式的特点,也就是正方形点阵的规律。有均衡的,有对称的,这就是数学之美。
2、研究长方形的点阵规律
(1)出示P83“试一试”第一题图
·····
·········
············
··············
(1×2)()()()
(2)师:你能找出这些长方形点阵有什么规律吗?
你能画出第五个点阵吗?
(3)小组讨论、交流。
(4)汇报小组的发现,展示所画的第五个点阵。
师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵。
3、研究三角形点阵的规律
(1)出示三角形点阵图
·
···
······
··········
(1)(3)(6)(10)
(2)师:①这是一组什么形状的点阵?
②你能用算式表示你发现的规律吗?
③根据点阵规律,画出第五个点阵。
(3)展示根据你发现的规律画出的第五个点阵。
(三):
其实,点阵是灵活多样的,每个点阵都有自己的规律,只要我们找到规律,就能推出后面点阵的点数。借助点阵图,不同的观察方法,可以得到不同的数的规律,正所谓“远看成岭近成峰,远近高低各不同”。
三、解决点阵问题:
(一)学生观察课本P83练一练第2题图,小组内说说他们的规律,然后小组合作画出下一个图形。
(二)汇报,展示,说说规律。
四、设计点阵:
(一)师:刚才,我们共同研究了一些点阵的规律。现在,你想自己设计一个点阵吗?接下来,我们就以小组为单位,开展一个点阵设计大赛,好吗?
(二)出示要求:
点阵设计大赛:
1、设计时间:5分钟
2、设计要求:
(1)小组合作,共同设计一幅有规律的'、美观的点阵图,画出前4个点阵,并用算式表示每个点阵的数量。
(2)每组派代表说明设计的方法及点阵中的规律,并展示作品。
小组内自由设计,展示。
五、感受点阵:
师:同学们个个都是个出色的小设计师!点阵的运用,在生活中也十分常见。比如:我们常玩的五子棋,围棋,跳棋都是点阵的运用。一些大型活动的展示标志,广场上美丽的花坛,由点阵构成的各种图案等等。可以说,生活中,处处离不开点阵的规律,离不开数学的知识。那么,就让我们用希腊数学家普洛克拉的一句话结束今天的学习:
哪里有数学,哪里就有美!数学美把自然规律抽象成一幅简洁准确的图像。
教学内容:
梯形面积的计算
教学目标:
1、使学生理解并掌握梯形面积的计算公式,并能正确计算出梯形面积。
2、通过梯形面积计算公式的推导过程,培养学生的实际操作能力和抽象概括能力,发展学生的空间观念。
3、结合教学,使学生受到唯物辩证观的启蒙教育,知道事物是相互联系的、变化的。在一定条件下可以转化。懂得用运动、联系的观点去观察、研究事物。
教学重点、难点和关键:
教学重点:
梯形面积的计算公式。教学难点:梯形面积计算公式的推导过程。教学关键:通过操作实践,将梯形转化为平行四边形,探索梯形与拼成的平行四边形的关系。
教具、学具准备:
教师准备多媒体课件、学生备用梯形硬纸片。
教学过程:
一、复习引入:
1、复习:
同学们会计算哪些图形的面积?
计算下列图形的面积:多媒体出示。
2、引入:
屏幕出现梯形,问:这是什么图形,图上告诉了什么?它的面积是多少?同学们还不会计算梯形的面积。这节课,老师就和同学们一起来研究梯形面积的计算方法。
3、回忆旧知
我们在学习平行四边形面积时,是怎样推导出平行四边形面积公式的?(多媒体课件演示)
我们在学习三角形面积时,又是怎样推导出三角形面积计算公式的?(课件演示)
二、探索解决问题办法,并尝试转化
1、引导学生提出解决问题方案
我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?
你准备用什么方法把梯形转化为我们学过的图形?
2、学生尝试转化
刚才同学提出了用割补的方法、用拼摆的方法。那么,怎样来割补呢?
学生上台演示后,教师指出:由于梯形的不规划,刚才的同学没有转化成功,其实是可以用割补的方法来转化的,请大家看一看:多媒体演示割补转化。
那么,用拼摆的方法呢,你准备怎样来拼?
学生上台演示。
3、学生操作、实施转化
学生以四人小组为单位,拼摆梯形。
请同学们告诉老师:你用两个完全一样的梯形拼成了一个什么图形?
谁来说一说,你是怎样拼的?多媒体课件演示。
三、观察图形,推导公式:
1、观察
同学们把梯形转化成我们学过的平行四边形。我们观察一下:拼成的平行四边形与原来的梯形有什么关系?
它们的底、高和面积,大小怎样呢?小组讨论。
学生总结汇报后多媒体课件演示。
2、计算梯形面积
平行四边形的面积会算吗,这个梯形的面积应该怎样计算?同桌讨论计算方法。算式是什么?
算式中3加5的和求的是什么?乘以4得到什么?再除以2呢?为什么要除以2?
计算面积,学生口述,教师板书。
3、推导梯形面积公式
算式中的3、5、4分别表示梯形的什么,想一想梯形面积的计算方法是什么?
用字母表示梯形面积公式
阅读教材,加深理解
四、应用公式计算梯形面积
1、基本练习:
计算下面梯形面积
2、教学例题
出示例题并理解题意。
计算面积,一人板演,全班齐练。
3、判断题
4、抢答题
5、测量并计算
五、总结课堂
《梯形的面积》的教学设计及反思
教学创意及反思:《梯形的面积》这一课,在探索活动中学生借助知识的'迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。
本节微课我努力在教学设计、教学行为语言、教学的展示上突出学习的双向性,避免纯粹的讲解,尝试做到“生”“屏”互动。具体有以下创新点:
一是教师放手让学生自己利用前面的学习经验,主动发现和提出数学问题,思考解决问题的方法,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。
二是教师依据学生的心理特点,创设了请学生帮老师解决如何比较车窗玻璃大小的问题以及课后的作业求堤坝横截面的面积,这样做不仅有效提出了数学问题,同时还激发了学生求知的愿望。做到了《标准》对于情境的创设“要联系学生的生活实际”的要求。使学生切实并切身地体会到了数学与生活的密切联系,真正体现了数学“于生活,回归于生活”的思想。
三是教师在微课的环节和问题设计中注重培养学生的猜测推理、操作探究、归纳总结及自主学习的能力,使微课起到吸引学生,指导学习,提升效果的作用。
介绍:在设计和制作中我努力做到“生”“屏”互动,产生双向学习的效应。能生动形象地展示梯形面积计算公式的探究过程,让学生充分地经历图形转化、想象的思考过程,积累活动经验,观察分析梯形转化前后图形面积及图形各要素之间的关系,推导出梯形面积的计算方法,深入理解梯形面积的计算公式。
应用情况:本节微课应用于义务教育小学数学北师大版五年级学生,本课内容为梯形的面积计算,讲课中教师能切合五年级学生年龄、学情特点、学科特点以及学段特点,应用生动形象的提问、对话、操作、演示等教学方法,让学生在独立思考,自主探究的过程中经历了猜测推理、操作探究、归纳总结的数学学习过程,在数学思想的形成和学习方法的提高上得到了培养,实现了新课标所提出的四基四能的要求。教学过程深入浅出,课堂氛围生动有趣。
梯形面积计算教学设计
教学目标: 1.使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。
2.使学生理解梯形面积的计算方法,能正确地计算梯形的面积。
3.培养学生的观察、比较、分析以及动手操作的能力,发展学生的空间观念。
教学重点: 理解梯形面积的计算方法,正确计算梯形的面积。
教学难点: 梯形面积计算方法的推导过程。
教学准备: 多媒体课件
教学过程
一.复习引入。
1.同学们已经掌握了平行四边形和三角形面积的计算。现在我就想考考同学到底掌握得怎么样?谁能够快速准确地说出这些图形的面积呢?
2.计算下面图形的面积。(单位:厘米)
3.我们先看第一个图形,它的面积hTtp://是多少?(300平方厘米)
你是怎样计算的?(20×15=300)
你的根据是什么?(平行四边形的面积=底×高)
你能说你的这个方法是怎么得出来的吗?(沿着平行四边形的一条高剪开,再把它从一边移动另一边,这样就拼成了一个长方形。)
4.那么第二个图形的。面积是多少呢?(36平方厘米)
你是怎样计算的?(12×6÷2=36)
你的根据是什么?(三角形的面积=底×高÷2)
你能说你的这个方法是怎么得出来的吗?(将一个一模一样的三角形沿一个顶点旋转180?,再沿边平移上去,这样就拼成了一个平行四边形。)
5.出示转化过程并小结:我们是把平行四边形、三角形分别转化成长方形、平行四边形这些我们已经学过的图形来计算出它们的面积的!
二.新课传授。
(一)面积计算方法的推导过程。
1.今天我还带来了另外一个图形,谁能告诉我这是什么图形?(出示梯形)
你怎么知道它是梯形?(只有一组对边平行)
2.提出质疑揭示课题:今天我们就一起来研究梯形面积的计算(板书),我们是否可以仿照平行四边形和三角形的方法,把梯形也转化成已学过的图形来计算它的面积呢?请同学们拿出准备好的梯形和剪刀,看看你能不能通过剪一剪、拼一拼把梯形也转化成我们已经学过的图形呢?
3.学生动手操作,分别展示成果。
(1)
请学生说出自己的想法和拼法。(将一个一模一样的梯形沿一个顶点旋转180?,再沿腰平移上去,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高没有变,面积是梯形的两倍。)
(2)
请学生说出自己的想法和拼法。(将梯形上底和下底对折,再沿折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个平行四边形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的平行四边形的底是原来梯形的上底与下底的和,高是原来梯形面积的一半,面积没有变。)
(3)
请学生说出自己的想法和拼法。(沿梯形一腰中点和对角顶点对折,再折线剪开,将上面的一半沿腰上的中点旋转180?,这样就拼成了一个三角形。)
现在我们来看一看拼成的图形与原来的梯形有些什么样的关系?(拼成的三角形的底是原来梯形的上底与下底的和,高是没有变,面积也没有变。)
4.我们用很多方法计算出了梯形的面积,但是在实际生活中,有许多东西象钢板等等是不能这样剪开来拼拼的,所以我们就需要知道计算梯形的面积规律。请同学以小组的形式讨论一下,你能从你的方法中得出什么计算的规律吗?
5.你是怎么得出这个规律的?
小学五年级数学教案--梯形面积计算
教学内容:小学数学第七册74-75页的内容
教学目的:
1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。
2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重点、难点:理解梯形面积计算公式的推导,并能应用公式正确的进行计算。
教具准备:课件。
教学过程:
(一)复习旧知,做好铺垫。
1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。
2、练习(出示)
口答下面各图形的面积。(单位:厘米)
(二)创设情景,提出问题
师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)
师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)
师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)
(三)小组学习,解决问题。
师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)
合作要求:
(1)想一想:我们已经学过哪几种图形的面积公式?
(2)试一试:把梯形转化成已经学过的图形。(任选一种)
(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?
(4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。
全班交流时,教师根据学生说的方法用课件演示转化及推导过程。
教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)
师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)
师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。
课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?
让学生独立计算,在集体订正。
师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。
(四)应用拓展,巩固知识。
师:下面我们来做练习吧。
1、练习
a.课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。
b.课件出示:P75做一做,由学生独立完成,集体订正。
c.课件出示:判断
1)两个梯形能拼成一个平行四边形。( )
2)平行四边形的面积是梯形面积的2倍。( )
让学生独立判断,并说明理由。
2、练习
a.课件出示:
一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。
b.课件出示:
我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:
(顶层根数+底层根数)×层数÷2
想一想是什么道理,并算出图中圆木的总根数。
3、三☆练习
课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。
学生独立解答,再交流。
(五)小结全课,结束教学
让学生讲讲这节课的收获,并布置作业。
班级情况及学生特点分析:
我所任教的五年级二班学生共52人,因为我班的学生基础较差,上课好动,作业拖拉,虽然训练一个学年,但还是不令人十分满意 。因此教学借助多媒体课件及自制学具来激发他们的学习兴趣,设计使学生带着"想知道梯形的面积是多少吗?你用什么方法知道它们的面积呢?"先独立操作,然后再小组交流,集中小组中不同的解法。然后再全班以组进行汇报在教学中我以学生的发展为着眼点,大力培养学生的综合能力,拓宽学生视野,改变学生的方式,逐渐尝试建立发现问题――自主探究--解释应用的教学模式,确立以学生为主体的探索性学习方式。
教学内容:梯形面积的计算。
教学内容分析:
本节课是北师大教材五年级上册第二单元“图形的面积”中的一课时,教学内容是梯形的面积计算。梯形的面积是在学生掌握基本平面图形的特征和求三角形、平行四边形面积的基础上的进一步扩展,教材这样安排的目的是通过学生观察比较的活动,让每个学生懂得面积计算方法的多样化。同时,也让他们掌握梯形的面积计算公式的来源。这样,也为学生自己探索基本图形面积计算打下基础。
教学目标:
1.理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2.发展学生空间观念。培养抽象、概括和解决实际问题的能力。
3.掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。
教学重点:理解、掌握梯形面积的计算公式。
教学难点:理解梯形面积公式的推导过程。
教学课时:1课时
教学准备:
1. 学生准备两个完全一样的梯形。
2. 老师准备多媒体课件。
教学过程:
1.导入新课
(1)投影出示一个三角形,提问:
这是一个三角形,怎样求它的面积?三角形面积计算公式是怎样推导得到的?学生回答后,指名学生操作演示转化的方法。
(2)展示台出示梯形,让学生说出它的上底、下底和各是多少厘米。
(3)教师导语:我们已学会了用转化的方法推导三角形面积的计算公式,那怎样计算梯形的面积呢?这节课我们就来解决这个问题。(板书课题,梯形面积的计算)
2.新课展开
第一层次,推导公式
(1)操作学具
①启发学生思考:你能仿照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它的面积吗?
②学生拿出两个完全一样的梯形,拼一拼,教师巡回观察指导。
③指名学生操作演示。
④教师带领学生共同操作:梯形(重叠) 旋转 平移 平形四边形。
(2)观察思考
①教师提出问题引导学生观察。
a. 用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?
b. 每个梯形的面积与拼成的平形四边形的面积有什么关系?
(3)反馈交流,推导公式。
①学生回答上述问题。
②师生共同总结梯形面积的计算公式。
板书:梯形的面积=(上底+下底)×高÷2
③字母表示公式。 教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?
学生回答后,教师板书:“S=(a+b)h÷2”。
第二层次,深化认识。
(1)启发学生回忆平行四边形面积公式的推导方法。
①提问:想一想平行四边形面积公式是怎样推导得到的?
②学生回答,教师在展示台再现平行四边形面积公式的推导方法。
(2)引导操作。
①学习平行四边形面积时,我们用割补的方法把平行四边形转化成长方形。能否仿照求平行四边形面积的方法,把一个梯形转化成已学过的图形,推导梯形面积的计算公式呢?
②学生动手操作、探究、讨论,教师作适当指导。
(3)信息反馈,扩展思路。
说一说你是怎样割补的?教师展示各种割补方法。
第三层次,公式应用。
(1)出示课本第89页的例题,教师指导学生理解“横截面”。
(2)学生尝试解答。
(3)展示台出示例题的解答,反馈矫正。
(4)完成例题下面的“做一做”。
3.巩固练习
(1)完成练习十七第1、2和3题。
(2)讨论完成练习十七第4和6题。
4.全课小结
这节课你们有什么收获?你们还想了解什么?学生列举活动中的种种收获、困惑。教师给予引导、肯定、鼓励和指正。
课后反思:
!《梯形面积的计算》教学反思
在经历了平行四边形和三角形的面积计算公式推导过程的体验基础上,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。具体情况如下:
一、提出问题,激发兴趣
我先运用投影出示了一个三角形,让学生回顾三角形的面积计算方法,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?
学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。
二、注重合作,促进交流
学生在前面学习的经验基础上,最容易想到的是模仿三角形的面积公式的推导方法进行转化,所以很快从书上的129页找到了两个完全一样的梯形开始做起来。
这时,我提醒他们:“小组的同学可以相互配合呀!每人做一组,然后一起讨论:梯形的上底、下底、高与拼成的图形各部分之间有什么联系?这样就容易发现梯形的面积公式了!”
学生很轻松地完成了探究任务,自豪写在脸上。因为是自己探究完成得出的结论,所以他们有话可说,我就让学生充分交流,让他们多说,并引导他们说准确,说具体,还建议他们利用学具进行演示,整个过程中学生都感受着成功。
三、思维拓展,能力提升
新课的探究活动进行到这里,似乎该结束了,可我却抓住这时学生探究的热情继续拓展:你们能试着用其他方法推导出梯形面积公式吗?
开始时,学生显得毫无头绪,我偶然发现一个学生在折手中的梯形,就不失时机地提醒他:“你看你把梯形分成两个部分了,你能分别表示出两个部分的面积吗?”学生兴趣盎然。很快就表示出两个三角形的面积,即:上底×高÷2、下底×高÷2,于是引导学生把两个算式加起来,从而推导出梯形面积公式便成为可能,因为学生在四年级时已经学过类似的乘法分配率的知识,所以可以看出大多数学生还是理解了。
很多学生是理解了把梯形分成两个三角形来推导梯形面积计算公式的,而受此启发,又有学生把梯形分成一个平行四边形和一个三角形,此时,教室里自发地形成讨论小组作进一步的推理论证,教学活动到这时达到一个高潮。
由于这节课花了较多的时间带领学生们探究梯形面积公式的推导过程,特别是从不同的视角给学生提供了更多的探究机会,使教学活动不局限于课本,不拘泥于教材,给学生更多的思维拓展空间,学生的学习积极性得到了提升,但教学中没有更多的时间去进行巩固练习了。遗憾吗?不,我觉得这样经常把探究活动更深入地开展下去的教学更有利于学生的思维训练,更有利于学生的长远发展,因为我认为:学生学习的过程比结果应该更重要一些。
教学目标
1、通过操作、观察、比较等活动,自主探索梯形面积计算公式,渗透转化的数学思想方法。
2、能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。
教学重难点
教学重点:探索并掌握梯形面积计算公式。
教学难点:理解梯形面积计算公式的推导过程,体会转化的思想。
教学过程
一、复习引入,知识铺垫
计算下面各图形的面积:
全班核对答案。
教师:平行四边形、三角形的面积计算公式分别是什么?
教师:它们之间有什么联系呢?
因为两个完全重合的三角形可以拼成一个平行四边形,所以平行四边形面积的计算公式的一半就是三角形面积的计算公式。
【设计意图】通过平行四边形、三角形的面积计算方法以及它们之间的联系,为学习新知做好方法上的准备。
二、探究梯形面积的计算公式
1、提出问题(课件出示教材第95页的主题图)。
教师:同学们在图中发现了什么?
教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?
教师:你能用学过的方法推导出梯形的面积计算公式吗?
2、动手操作。
(1)选择合适的材料,进行操作。(同桌合作)
(2)反馈交流。
让各小组充分展示操作过程。关键了解学生是怎样想的?询问其余同学是否有疑问?在操作中学生会发现,只有两个完全重合的梯形才能拼成一个平行四边形。
预设:
①数方格;
②拼摆,转化成平行四边形;
③割,转化成两个三角形;
④割,转化成一个平行四边形和一个三角形;
⑤割,转化成长方形和两个三角形;
⑥割补法,转化成平行四边形。
【设计意图】这一环节让学生大胆动手操作,在实验中不断发现解决问题,在同伴的交流中拓展自己的思维、视野。
3、公式推导。
(1)教师:
方法①的数方格的方法中渗透着割补法的思想,
方法②到方法⑥都是把梯形转化成我们已经学过面积计算方法的图形。
先以方法②为例,观察原有的梯形和转化后的平行四边形,你发现它们之间有哪些等量关系?
学生:梯形的上底与下底的和等于平行四边形的底,梯形的高和平行四边形的高相等。梯形的面积是平行四边形的面积的一半。
学生边说,教师边课件演示。
逐步完成板书:
教师:如果用表示梯形的面积,表示梯形的上底,表示梯形的下底,表示梯形的高,梯形的面积公式还可以写成:(板书)。
(2)教师:观察方法③,如果把梯形割成两个三角形,如何来推导梯形的面积计算公式呢?这两个三角形和原来的梯形有什么样的等量关系呢?
学生:三角形1的底就是梯形的上底,三角形2的底就是梯形的下底,两个三角形的高都和梯形的高相等。两个三角形的面积之和就是梯形的面积。
学生边说,教师边板书演示。
教师:为了方便,我们直接用表示梯形的上底,用表示梯形的下底,表示梯形的高。
教师:这与前面推导出来的梯形面积计算公式是一样的。
(3)教师:观察方法④,如果把梯形分割成一个平行四边形和一个三角形,又如何推导公式呢?割成的平行四边形、三角形和原来的梯形有什么样的等量关系呢?
学生:平行四边形的底就是梯形的上底,三角形的底等于梯形的下底减上底,平行四边形、三角形和梯形的高是相等的。平行四边形的面积加三角形的面积就等于梯形的面积。
学生边说,教师边板书演示。
其中的计算过程稍复杂,可配合教师讲解完成。
教师:这和前面推导出来的结论是一样的。
(4)教师:看方法⑤,把梯形分割成一个长方形和两个三角形,又如何推导公式呢?先说说它们之间有什么样的等量关系?
学生:长方形的长就是梯形的上底,长方形、三角形和梯形的高是相等的。长方形加两个三角形的面积就是梯形的面积。
学生发现两个三角形的底是多少,无法描述,不确定。这时,把两个三角形拼成一个三角形。新三角形的底就是梯形的下底减上底。
教师边板书演示。
教师:接下来的推导过程和方法④是一样的。
(5)教师:方法⑥,通过割补法把梯形转化成平行四边形。它们之间又有什么样的等量关系呢?
学生:平行四边形的底就是梯形的上底和下底之和,平行四边形的高等于梯形的高的一半。平行四边形的面积和梯形的面积相等。
教师课件演示。
教师:通过上面多种转化方法,我们知道了梯形的面积计算公式,现在你知道要计算梯形的面积需要哪些数据了吗?(上底、下底、高)
【设计意图】不满足于一种方法的公式推导,展示多种方法,开拓学生的思维,沟通多种推导方法之间的联系和区别,凸显转化思想的作用。
三、学以致用
1、出示教材第96页例3。
例:我国长江三峡水电大坝的横截面的一部分是梯形,求它的面积?
教师:什么是横截面?
请学生独立解决,全班核对答案。
教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。
2、练习,出示教材第96页“做一做”。
教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。
3、求面积,只列式不计算?
4、求出这条水渠的横截面?
5、有一个梯形果园,它的上底是45米,下底是60米,高是30米,如果每棵果树占地15平方米,这个果园大约可以种果树多少棵?
6、判断:
1、两个面积相等的梯形可以拼成一个平行四
边形。
2、梯形面积是三角形面积的2倍()。
3、一个梯形有无数条高()。
4、如果梯形的面积是12平方厘米,两个完全一样的
梯形拼成的平行四边形的面积是6平方厘米。()
5、一个梯形上下底的和是20米,高是8米,这个梯
形的面积是80平方米。()。
【设计意图】因为学生第一次接触“横截面”,所以强调了对“横截面”的理解。从简到难,多层次对公式进行应用,在应用中加强对公式的理解。
四、回顾反思
教师:回顾本节课所学的内容,你最大的收获是什么?
【设计意图】在总结回顾中,帮助学生进一步理解提升所学的知识。
五、布置作业
完成教材第97页第1题到第5题。
教学目标
1、理解、掌握梯形面积的计算公式,并能运用公式正确计算梯形的面积。
2、发展学生的空间观念。培养抽象、概括和解决实际问题的能力。
3、掌握转化的思想和方法,进一步明白事物之间是相互联系的,可以相互转化的。
重点难点
重点:掌握梯形面积的计算公式。
难点:理解梯形面积公式的推导过程。
教具学具
多媒体课件。每人准备两个完全一样的梯形。(有等腰、直角、一般梯形)
教学过程
一、导入
1、师:同学们,之前我们学过的平行四边形和三角形的面积是如何计算的?
生:平行四边形的面积=底×高,也就是S=ah。
三角形的面积=底×高÷2,也就是S=ah÷2。
2、指名让学生说出平行四边形、三角形的面积公式的推导过程。
3、师:根据前面的学习,我们把要研究的图形转化成已学过的平面图形,就能找到所求图形面积的`计算方法,今天我们要研究的梯形的面积,可以怎样转化呢?下面我们就来实践操作一下吧。
二、探究
1、师:请同学们拿出准备好的梯形,这些梯形有什么特点?
生:各种梯形,每种两个。
提出要求:(1)选择自己喜欢的梯形把它拼成我们学过的图形。
(2)想一想,拼成怎样的图形,是利用怎样的方法拼成的?
(3)它们的高与梯形的高有怎样的关系?它们的底与梯形的上、下底有怎样的关系?它们的面积与梯形的面积有着怎样的联系?
2、学生先独立思考,后小组交流。
教师巡视指导,引导学生把转化前后的图形各部分之间的关系找准。
3、师:(出示课件)现在画面展示的是两个完全相同的梯形重叠在一起,哪个小组能说一说刚才你们将其拼成了什么图形?是怎样拼的?
各小组推选1人向全班汇报过程与结果。(教师逐一配以课件演示)
三、汇报
四、总结
师:学完这节课,你收获了什么呢?跟大家说说吧!
学生讨论。
老师小结:通过本节课的学习,同学们经历了梯形的转化过程,推导出梯形的面积计算公式,能灵活运用知识解决问题。