作为一无名无私奉献的教育工作者,就有可能用到教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。教学设计要怎么写呢?为大家精心整理了平行四边形的面积教学设计最新5篇,如果对您有一些参考与帮助,请分享给最好的朋友。
教学目标:
1、通过观察、实验操作、合作和讨论,使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法;会正确应用所学的知识解答有关的问题。
2、通过操作、分析讨论等活动,培养学生
动手操作的能力和归纳、概括的能力,初步渗透转化等数学思想,进一步发展学生的空间观念。
3、通过实验探究,解决问题等活动,使学生初步学会从数学的角度提出问题,理解问题,解决问题,发展应用意识;同时能与他人交流思维的过程和结果,培养合作交往能力。
4、通过学习提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。
教学重点:
使学生在进行平行四边形面积计算方法的推导过程中,理解并掌握计算方法。
教学难点:
能正确推导得出计算公式,会正确应用所学的知识解决简单的实际问题。
教学过程:
一、情景引入
1、联系实际选择建房用地。
(1)利用绕城高速路建设中房屋拆迁转移的事例提问:小明家的房屋也被拆迁转移了,政府根据有关规定给它们一定的经济赔偿和一块新房建设用地。新房建设用地是在同一地段的两块地中选择(如图)。你会选择哪一块,为什么?
(2)联系刚才的选择地的情况,让学生比较两块地的大小情况。
让学生说说自己的比较的方法,如“数格子”,“剪拼比”等方法,同时提出:在剪拼比时你还能发现什么?
(3)引入课题:通过比较,我们发现两块地一样大。但在现实生活中我们能不能把两块地直接进行剪拼,比较呢?那还可以用什么方法来比较两块地的大小情况呢……
二、探究新知
1、面积计算公式的推导:
引入:在刚才的比较中,我们发现可以把平行四边形转化成长方形。那能不能把任何一个平行四边形都转化成长方形呢?
(1)讲解相关的要求。明确小组研究要求。
(2)操作验证。巡视,个别指导。
(3)集体交流,得出三个相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积)。
问:你剪拼成了什么图形,你从中发现了什么?(得出多种方法)
(4)明确各种相等(长方形的长与平行四边形的底、长方形的宽与平行四边形的高、长方形的面积与平行四边形的面积),推导面积公式。
引导:把平行四边形转化成长方形后,发现了什么(面积相等)我们还发现些什么(这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。)
教师逐步点击交互,得出:
长方形的面积=长×宽
平行四边形的面积=底×高
(5)用字母表示面积计算公式。
(6)小结。(明确转化的方法。)
2、面积计算公式的应用:
(1)联系引入部分,提出利用计算的方法来比较那两块地的大小:请计算平行四边形的面积。
讨论后,给出底和高,进行计算。
(2)计算长方形面积,再次通过计算的方法说明两块地面积相等。
(3)试一试:计算平行四边形的面积。
3、教学小结。进行推导:
(1)明确研究的要求。
(2)动手操作:根据要求将平行四边形剪拼成长方形。(同组中相互交流。)
(3)得出多种方法,明确平行四边形剪拼成长方形后,它的面积大小没有改变,并逐步得出其它的相等的情况。
(4)结合媒体的剪拼过程的演示,集体交流,进一步明确三个相等,得出面积计算公式。
(5)了解认识、明确:S=a×h,S=a·h或者S=ah。
(6)进行小结。
4、初步运用公式。
(1)教学试一试,(2)练一练。
三、巩固应用
1、练习二“第1题”。
先让学生独立思考,画一画。交流时说出思考过程,进一步强化对平行四边形与转化成的长方形之间联系的认识。这是一个反向建构的过程。
2、练习二“第2题”。
可以先提问学生:求平行四边形的面积需要测量哪些数据?然后组织学生测量和计算,提醒他们测量时一般取整厘米数。
3、练习二“第3题”。
这是生活中实际存在的问题。既让学生应用公式解决问题,也渗透了估测的方法。解答完后让学生明白:计算的结果只是这块菜地面积的近似值,而这样的近似值一般已能满足解决简单实际问题的需要。
4、练习二“第5题”。
让学生在读懂题意的基础上先独立思考,给学有能力的同学以锻炼思维的机会,然后让同桌拿出准备好的两个同样大小的长方形木框。
四、课堂总结
今天学习了什么?你有什么收获?(让学生自由发挥。)
教学反思:
上述教学设计中,学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我们认为教学成功的关键在于学生是通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。上述教学中,教师带领学生选择建房用地,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”在教学中,对传统的平行四边形面积的教学方法作了大胆改进。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,大多数同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。令人惊喜的是,有的同学竟能发现两种猜想有矛盾之处,这是我所料始不及的,仔细想想,这虽出乎意料之外,却又在情理之中。因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……
在学生独立思考、自主探索的基础上组织学生进行合作交流这是本节课的重点环节,教师在放手让学生从自己的思维实际出发,给学生以独立思考时间的基础上让学生进行交流是十分必要的`。由于学生的学习活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流能满足学生展示自我的心理需要,同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。上面的教学片断中,学生之所以能想到用割补法将平行四边形转化为长方形,正是通过学生之间的相互交流、相互启发才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:"你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这个公式能运用于所有的平行四边形吗?”这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。
教学目标:
1、知识与技能:通过学生尝试探索、动手实践推导出平行四边形面积计算公式;能正确求平行四边形的面积。
2、过程与方法:让学生经历尝试探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理培养能力,发展学生的空间观念,渗透转化的思想方法。
3、情感态度与价值观:感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力增强学生学习数学的积极性;感受学习数学的快乐。
重点、难点:
教学重点:掌握平行四边形面积计算公式。
教学难点:平行四边形面积计算公式的推导过程。
教学准备:
教具准备:多媒体课件,平行四边形的图形。
学具准备:剪刀、平行四边形纸片。
教学过程:
一、情境导入
1、通过孙悟空和猪八戒玩拼图,提出数学问题:这两个图形面积相等吗?怎样比较,这就是这节课我们要解决的问题。
2、提出问题:孙悟空家住在村子的东头,可他家的地在村子的西头,猪八戒家住在村子的西头,可他家的地却在村子的东头。太不方便了,怎么办呢?
通过交换土地的想法揭示课题《平行四边形的面积》
【设计意图:教师选取孙悟空和猪八戒拼图的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的`联系,更能激发求知欲望。】
二、自主学习
1.剪一剪,拼一拼。
师:你能自己想办法算出平行四边形的面积吗?请同学们用课前准备好的平行四边形卡片和剪刀剪一剪、拼一拼。(学生动手操作,汇报演示操作成果)
2.探讨联系
师:同学们真棒!很快就把平行四边形转换成了长方形,请同学们认真观察,原来平行四边形的面积、底和高分别与后来长方形的面积、长和宽有什么联系?
(1)学生自主动手操作,探索问题,自己动手把不认识的图形转化成认识的图形。
(2)小组围绕问题讨论交流,引导学生边动手操作边观察。让学生结合图形演示并说明长方形的面积与原来平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
(3)全班汇报交流结果。从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。
3.推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)
【设计意图:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。】
三、巩固练习
师:现在我们就一起帮孙悟空和猪八戒解决这个问题,可以交换,因为交换是公平的,为了感谢我们,他们带来了几道题。
【设计意图:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识解决问题的过程中体验成功的快乐。】
四、课堂小结
这节课你有什么收获?
【设计意图:使学生回顾、梳理本节课的学习内容。】
【教学内容】
义务教育课程标准实验教科书数学五年级上册第五单元多边形的面积。
【教学目标】
1、通过教学使学生理解平行四边形的面积公式,并会运用公式解决实际问题。
2、在参与平行四边形面积公式的推导过程中渗透转化的思想方法,体会转化给学习所带来的方便。
3、通过猜测,操作,实践,归纳等环节,对学生进行多方面思维能力的培养,感受数学的魅力,培养学习数学的兴趣。
【教学重点】
平行四边形面积的推导过程、平行四边形的面积公式。
【教学难点】
平行四边形到长方形的转化过程。
【教学关键】
长方形和平行四边形的对比。
【教学方法】
猜想,动手操作,转化。
【知识基础】
长方形面积公式的推导过程、长方形的面积。
【教具准备】
活动的长方形边框
【辅助手段】
Ppt课件
【教学过程】
一、情境导入,揭示课题
1、同学们:几何图形是小学数学中最有趣的知识,你都知道哪些平面图形呢?(长方形、正方形、平行四边形、三角形、梯形、菱形、图形,课件出示学生说的图形,并依次说)
(课件出示)红星小学门口有两个花坛,请同学们看是什么图形?这两个花坛哪一个大呢?我们需要知道他们的什么?(面积)
我们已经学过长方形面积的计算,谁知道它的面积公式是什么?(长乘宽)公式是怎样推导出来的?(用数方格的方法)今天我们就来研究平行四边形的面积。
(板书课题)
二、探究新知,操作实践
(一)激发思维,寻求探究策略
1、要比较这两个图形的面积,你都有哪些方法呢?(学生同桌讨论1分钟),谁想把自己的方法和大家分享?
方法一:数方格
方法二:将平行四边形转化为长方形
2、学生数方格。(出示课本80页图,提示不满一格的按单元格计算),平行四边形和长方形分别是多少个面积单位?(24个)
测量图形面积我们可以用数方格的方法,那计算学校平行四边形花坛的面积我们还以用数方格的方法吗?数方格的方法不是处处适用,我们已经知道长方形的面积可以用长乘宽来计算,计算平行四边形面积是不是也有其他方法呢?能不能转化为我们已经学过图形的面积?
3、学生动手操作(课件出示提示语:要注意前后的变化,什么变了什么没变,形状变了,大小没变)
请同学们拿出学具,四人一小组研究研究。
学生汇报后,让我们共同来看看怎样把一个平行四边形转化为长方形,教师课件演示两种方法。
方法一:沿着平行四边形的顶点作一条高,剪开,平移,拼成一个长方形。
方法二:如果学生未说出第二种,师说明:实际上还有一种剪拼方法,沿着平行四边形的任意一条高剪开,平移后拼成一个长方形。
无论哪种方法,我们都是把平行四边形转化成长方形。
4、比较归纳,推导公式
我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,
提问:比较这两个图形,你发现了什么?(形状变了,大小没变)
学生汇报:我们把一个平行四边形转化成一个长方形,它的面积与原来平行四边形的面积相等。
这个长方形的长与平行四边形的底相等
这个长方形的宽与平行四边形的高相等
因为:长方形的。面积=长×宽
所以:平行四边形的面积=底×高
学生汇报公式,教师板书。同学们在心里默默的记记。
5、用字母表示公式
如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式怎样表示?
S=ah(学生说字母公式,师板书)
(二)解决问题
1、刚才我们动手操作推导出了求平行四边形的一般公式,现在我们看看怎样解决实际中的问题。
用公式验证前面数方格的平等四边形的面积。
平行四边形花坛的底是6m,高是4m,
它的面积是多少?
学生说,师板书
(三)实际应用
一块平行四边形菜地底是100m,高是30m。这块菜地的面积是多少公顷?平均每公顷收小麦7吨,这块地共收小麦多少吨?
学生自己解答。
三、智力闯关
这节课我们学习了平行四边形面积的计算方法,同学们掌握了没有,下面我们就进行智力闯关。
(一)有空就填
1、推导平行四边形的面积公式时,是沿着平行四边形的一条()剪开,然后通过(),将平行四边形转化成一个长方形。
2、将平行四边形转化成长方形后,图形的()没变。长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的()。
3、一个平行四边形的底是4厘米,高是3厘米,这个图形的面积是()。
(二)明辨是非
1、平行四边形的面积等于长方形的面积。()
2、平行四边形的底边越长,它的面积就越大。()
3、沿平行四边形的任意一条高剪开,可以拼成一个长方形,也可以拼成一个正方形。()
3、6cm
5cm
4、5cm
4cm
4、一个平行四边形的面积是24平方厘米,那么这个平行四边形的底是6厘米,高是4厘米。()
(三)鱼目混珠
如图,你能计算出这个平行四边形的面积吗?
四、课堂反思。
1、学生谈收获。
2、师生共同总结。
五、拓展延伸。
用木条做成一个长方形框,长8cm,宽6cm,它的周长和面积各是多少?如果把它拉成一个平行四边形,周长和面积有变化吗?说说你的想法。
学习目标
1、利用自己的方法,探索并掌握平行四边形面积的计算公式,会计算平行四边形的面积。
2、重点理解拼成的长方形和原来平行四边形的关系
教学过程:
一:回顾以前的知识、
师:今天我们学习什么知识?
生平行四边形的面积
师:先让我们汇报一下以前学过的相关知识吧?
生:长方形的面积=长乘宽正方形的面积=边长乘边长
平行四边形对边平行且相等平行四边形有无数高(出示课件)
师:小结从平行四边形的任何一边的一点,向对边都可以做一条高
二:我有成果展示
1师:通过预习,你有什么成果要向大家展示的?
生:汇报
2:师:好,大家自己都学会了这么多有关平行四边形面积的知识,现在,谁能简单的猜猜我们本节课的学习目标是什么?
3:师出示学习目标。
4:依据学习目标,你有什么疑问要提出吗?
生:汇报
师:不管有什么疑问,我们通过以下环节,看看是否其他同学能帮助你解决?
三:自主探究
一:拿出导学案:
师:谁能汇报一下,你完成表格的情况。(教材第80页的表格)
生:汇报
师:谁能说一说,平行四边形的面积,你是怎样知道的?
谁能说一说,你是怎样数出来的吗?
生:我先数整个格的是20个,在数八个半格的是整四个格,合起来是24个整个,也就是24平方米
师:我们也可以用平移的办法来得出平行四边形的面积,(课件演示)
师:那长方形的面积呢?
生可数出来,也可以用长乘宽计算
师:请大家观察表格的数据,你发现了什么?
生:平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,平行四边形的面积等于长方形的面积。
生:我们可以看出平行四边形面积=底乘高
师:我们如果用数方格的方法来计算平行四边形的面积,你会感觉怎样?
生麻烦
三合作探究
师:那我们可以用什么方法研究呢?
生:把平行四边形转化成长方形。
师:你是怎样把平行四边形转化成长方形的吗,请拿着你的平行四边形学具边演示边说。
生:过平行四边形一个顶点,沿着平行四边形地边上的高剪开。
师还有其他不同的剪法吗?
生:沿着平行四边形这一条边上的高剪开。
师:同时出示课件
师:听了同学们的简拼方法,你还有什们疑问吗?
生:老师为什么要沿着高剪开呢?
师:谁能帮助这位同学回答。
生:这样剪可以使两边变成直角,变成我们学过的长方形。
师刚才有的同学说沿高剪成了正方形,者必须满足什么条件呢?
生:平行四边的高等于平行四边形的底,这是特殊情况。
师:小结我们从平行四边形一组对边任意一点作高,通过平移都可拼成长方形或正方形。(课件出示结论)
师:观察拼成的长方形和原来的平行四边形,你能发现什么?
小组合作交流自己预习的成果。
请生汇报。
生:拼成长方形的面积和平行四边形的面积相等,面积不变。
拼成的长方形的长等于原来平行四边形的底,长方形的宽等于平行四边形的高
师:既然面积没变,什么变了呢?形状变了。
师:还有什么变了?
生沉默
师:周长变了吗?
生:变了
师:变大了还是变小了呢?谁能说说?
生:边指边说长方形的长就是平行四边形的底,长方形的宽比平行四边形高变短了,所以周长变小了。
师:给予积极肯定。
师:既然长方形的`面积=长乘宽,那么同学们可以推导出平行四边形的面积吗?
生:平行四边形的面积=底乘高
师:为什么平行四边形的面积等于底乘高?
生:因为拼成的长方形的长等于平行四边形的底,宽等于高,长方形的面积等于长乘宽,所以平行四边形的面积的等于底乘高
师:用字母怎样表示?
生:s=ab
师:小结刚才你们用剪拼的方法,将平行四边形转化成长方形,用旧知解决了新问题,非常好!实际这种解决问题的方法是应用了数学转化方法,今后在数学中,我们会经常用到。
师:出示例1:平行四边形的花坛的底是6m,高是4m,它的面积是多少?
生:自己解决。(集体纠正)
四:达标测评
一:人人轻松来过关
1:选择条件计算平行四边形的面积(单位:米)
二:迈开大步跨过关:
(看大屏幕略)
三:大胆跳起闯过关:
(1)平行四边形的底越长,它的面积就越大。()
(2)形状不同的两个平行四边形,面积可能相等。()
(3)把一个长方形木框拉成一个平行四边形木框,周长不变,面积也不变。()
四:一题多解
人民公园有一个平行四边形的草坪,草坪上有一个长30m,宽2。5m的甬道,求草坪的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=ah或S=ah
课后记:
第二课时
教学内容:
平行四边形面积计算的练习(P82~83页练习十五第4~8题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
1.4厘米
2.5厘米
a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。
7m
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十五第7题。
四、作业
练习十五第4题。
课后记:
第三课三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
理解三角形面积公式的。推导过程.
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。
教学过程
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?