比的意义教案教学设计优秀6篇

作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,借助教学设计可使学生在单位时间内能够学到更多的知识。那么应当如何写教学设计呢?这次漂亮的小编为您带来了比的意义教案教学设计优秀6篇,希望可以启发、帮助到大家。

《比的意义》教学设计 篇1

教学目标:

1、通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分的名称,理解比和分数、除法之间的关系。

2、会正确写出两个数倍比关系的对应比,掌握求比值的方法,能正确求比值。

3、通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辩证唯物主观点。

4、培养学生抽象、概括能力。

教学重点:

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关系。教学难点:

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关系。教学准备:投影教学过程:

一、 导入、揭题出示:我们六(5)班有男生23人,女生21人。师:根据这两条信息你能想什么办法对六(5)班男生、女生人数进行比较?师选择: ⑴男生人数比女生多多少人?⑵女生人数比男生少多少人? 师:请同学口头列式。⑶男生人数是女生的多少倍? 板书:23÷21⑷女生人数是男生的几分之几? 21÷23师:从同学们对六(5)班男生和女生的比较中可知,比较的方法主要有两种:一种是什么?(求一个数量比另一个数量多多少或少多少),是比差关系。用什么方法?(减法)。另一种是什么?(求一个数量是另一个数量的几倍或几分之几),是倍比关系。用什么方法?(除法)。师:今天这节课,我们主要来研究用除法对两个数量进行比较。我们把用除法对两个数量进行比较的这种新的数学比较方法叫做--比。今天我们一起来学习“比的意义”。

二、 探索新知

1、 教学比的意义

⑴指⑶ 师:23÷21,是谁和谁比?师述:用新的数学比较方法说,求男生是女生的几倍,又可以说成男生人数和女生人数的比是23比21(板书)。扶放启发:请同学想一想,仿上例(指21÷23)那么21÷23又可以怎么说呢?女生人数和男生人数的比是 21比23(板书)

⑵说一说:①苹果有4个,梨有5个。苹果和梨的关系怎么说?②舞蹈兴趣小组有女生9人,男生4人。(同桌互说,后指名说)。

⑶师: 用比的方法不但可以对同类量进行比较,还可以对不同类的量进行比较。[ 同类量:师可结合上例简单说明]师出示:一辆汽车2小时行驶100千米。问:①求汽车的速度怎样计算?100÷2=50(千米)(板书)②(指100÷2)路程和时间的关系还可以怎么说呢?路程和时间的比是100比2(板书)师:路程和时间的关系可以用速度(即每小时多少千米)表示,也可以用比来表示。

⑷学生举例举一个可以用比来表示两个不同类数量之间关系的例子。(同桌互说,后指名说)

⑸总结①思考、讨论: 什么情况下两个数的关系可以用比来表示?②指导学生看书看看教科书上是怎么定义的?指名说一说答案,然后齐读。(划出“两数相除”点上着重号)

2、 自学比的读写法、比各部分的名称、比值、比和除法各部分的关系

⑴师:关于比,你还想知道些什么?请同学们自学教科书第47页第一个“做一做”上面的内容。

⑵汇报:通过自学,你知道了什么?

①比的读写法指23比21;21比23;100比2 ,问:还可以怎么写?(学生练习)。怎么读?(齐读)②比的各部分名称、说一说比的前项、后项和比值分别是什么?

③比值。师:如何求比值?[反馈练习]①说一说比的前项、后项和比值分别是什么?8︰11=8÷11=8/11 1/4︰1/3=1/4÷1/3 =3/4 1.2 ︰0.3=1.2÷0.3= 4②抢答。教师出条件,学生抢答比值。比的前项是100,后项是2,比值是()比的前项是21,后项是23,比值是()比的前项是2.4,后项是3,比值是()

③做一做a、有5个红球和10个白球,写出红球和白球个数的比,再写出白球和红球个数的比,并分别求出比值。b、某种型号的文具盒,每1箱装12只,共计人民币72元,写出这箱文具盒的元数与只数的比,并求出比值。(说一说比值表示什么意思)

④比和除法各部分的关系整理表格:

联 系区 别比前项比号(︰)后项比值 除法被除数除号(÷)除数商 ⑶思考①比的后项为什么不能为0?②足球比赛中的0︰0,是不是我们数学上所说的比?

3、 继续自学两个“做一做”中间的内容

⑴让学生说说通过自学,你又明白了什么?

⑵想一想,辨一辨:既可以看作一个分数,又可以看作一个比,还可以看作比值。

⑶继续汇报,完成表格 联 系区 别比前项比号(︰)后项比值 除法被除数除号(÷)除数商 分数分子分数线(-)分母分数值 ⑷反馈练习变一变, 填一填3÷19=( )︰( ) 21︰100 =( )/( ) 4/23=( )︰( )1/8=1︰( )=( )÷ 8 A︰B =( )÷( )=( )/( )( )︰( )= ( )÷7=5/( )⑸找一找,比、除法、分数分别表示什么?(区别,完成表格)一种数 一种相除的关系 一种运算三、 课堂总结通过刚才的学习,同学们都学会了哪些知识?

四、综合练习

1、讨论:小强的身高1米,他爸爸的身高是173厘米。 小强说他和他爸爸身高的比是1︰173,对不对?你认为是什么?

2、看谁会动脑筋?题目:小明今年12岁,是六

(1)班学生,该班共有42个学生;小明爸爸今年38岁,再保险公司上班,年薪15000元;小明的妈妈每月工资800元,他所在单位有职工24人。(看谁会动脑筋,能根据题目中提供的信息,寻找合适的量,自己提出多种多样的问题,并说说这些量之间的比)。

板书: 比的意义 23÷21 相 23比21 (23︰21)21÷23 → → 21比23 (21︰23)100÷2 除 100比2 (100︰2)

教学目标: 篇2

1.通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分名称,理解比和分数、除法之间的关系。

2.通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辨证唯物主义观点。

引导过程 篇3

㈠引导探索,使学生由比较两个同类量之间的倍数关系,引出用比表示的方法。

谈话:同学们,有谁知道,今年的雅典奥运会上,中国代表团共获得多少枚金牌?中华人民共和国的国歌在雅典奥运会上多少次庄严奏起,中华人民共和国的国旗多少次在雅典上空率先升起。“五星红旗啊,我们为你自豪”。

同学们,你知道国旗的制作标准吗?下面我们就来计算一下。

投影:这面国旗,长是3分米,宽是2分米。

⒈引导再学。出示初学思考题:

长是宽的几倍,还可以把长和宽的关系说成什么?

宽是长的几分之几,还可以把宽和长的关系说成什么?

⒉讨论回答思考题

师:长是宽的几倍,还可以把长和宽的关系说成什么?

生:长是宽的3/2倍,我们还可以把长和宽的关系说成-----长和宽的比是3比2。

板书 3÷2=3/2 或 3比2

师:宽是长的几分之几,还可以把宽和长的关系说成什么?

生:宽是长的2/3,我们还可以宽和长的关系说成-----宽和长的比是2比3。

板书 2÷3=2/3 或 2比3

师:由上可知,我们还可以用比来表示长与宽之间的倍数关系。

㈡再次探索用比表示两个不同类量之间的除法关系。

投影:一辆汽车,2小时行驶了100千米。

出示初学思考题,引导再学。

① 题目中有哪几个量?可以求出什么问题?怎样求?

② 这两个量间的关系用比怎样表示?

讨论思考题:

师:路程和时间的关系用比来表示怎么说?

生:汽车所行路程和时间的比是100比2。

板书 100÷2=50 或 路程和时间的比是100比2

师:那么汽车所行时间和路程的关系是什么?能用比表示吗?

引导学生弄清谁与谁比,比的结果、意义不同。

㈢引导归纳比的意义,理解掌握比和分数、除法的关系

学生先阅读课本第62页的内容,再学思考题。

思考题:①比是表示几个量之间的什么关系?什么叫做比?

②比的符号是什么?比的每个部分的名称是什么?

③比和除法有怎样的联系和区别?比和分数呢?

⑴回答思考题①,师即时板书。

生:比是表示两个量之间的相除关系,因此两个数相除又叫做两个数的比。

⑵回答思考题②:

师:除法的运算符号是除号,表示比的符号是什么呢?还有其他的表示方法吗?

生:比的符号是比号,写作“﹕”要写在两个数的'中间。比号前面的数叫比的前项,比号后面的数叫比的后项,比的前项除以后项所得的商叫做比值。

3 比 2记作3﹕2 或3 / 2

板书 3 ﹕ 2 = 3 ÷ 2 = 1.5

前项 比号 后项 比值

师:3/2是比的另一种分数形式的写法,仍读作3比2,不能读作二分之三。

⑶回答思考题③:

生答,师填表

除法

被除数

除号

除数

一种运算

前项

比号

后项

比值

两个数的关系

分数

分子

分数线

分母

分数值

一种数

《比的意义》教学设计 篇4

教学目标:

1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。

2、掌握求比值的方法,并能正确求出比的比值。

3、培养学生抽象、概括能力。

教学重点:

理解比的意义,掌握求比值的方法。

教学难点:

理解比的意义,建立比的概 念

教学过程:

活动一:

同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。

课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?

在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。

活动二;

(一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?

同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?

让学生举出生活中这样的例子。

(二)探究非同类量的比

课件出示书中的第二个红点问题。

让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?

再让学生举出生活中这样地例子。

活动三:

仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)

通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。

课件出示问题:

⑴、比的读、写法?比都有哪些表示形式?

⑵、比的各部分名称?如何求比值?

⑶、比和除法、分数有哪些联系?

⑷、比的后项能不能是0?为什么?

引导学生起来交流,在学生交流的基础上有针对性的板书。

活动四:

1、填一填。

⑴、把2克盐溶解在100克水中,盐和水的比的( )。盐和盐水的比是( )。

⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是( ),比值是( )。

活动五;

学生谈收获。

比的意义优秀教学设计 篇5

教学目标:

1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。

2、掌握求比值的方法,并能正确求出比的比值。

3、培养学生抽象、概括能力。

教学重点:

理解比的意义,掌握求比值的方法。

教学难点:

理解比的意义,建立比的概念

教学过程:

活动一:

同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。

课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?

在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。

活动二;

(一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?

同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?

让学生举出生活中这样的例子。

(二)探究非同类量的比

课件出示书中的第二个红点问题。

让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?

再让学生举出生活中这样地例子。

活动三:

仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)

通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。

课件出示问题:

⑴、比的读、写法?比都有哪些表示形式?

⑵、比的各部分名称?如何求比值?

⑶、比和除法、分数有哪些联系?

⑷、比的后项能不能是0?为什么?

引导学生起来交流,在学生交流的基础上有针对性的板书。

活动四:

填一填。

把2克盐溶解在100克水中,盐和水的比的()。盐和盐水的比是()。

一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是(),比值是()。

活动五;

学生谈收获。

《比的意义》教学设计 篇6

教学目标

1.理解比的意义,掌握比的读法和写法,认识比的各部分名称.

2.掌握求比值的方法,并能正确求出比的比值.

3.培养学生抽象、概括能力.

教学重点

理解比的意义,掌握求比值的方法.

教学难点

理解比的意义,建立比的概念.

教学过程()

一、谈话引入

在日常生活和和工农业生产中,常常需要对两个数量进行比较.比较的方法我们已经学过两种(比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法),今天我们学习一种新的比较方法,叫做比.(板书:比的意义)

二、讲授新课

(一)教学例1

例1.一面红旗,长3分米,宽2分米.长是宽的几倍?宽是长的几分之几?

板书:3÷2= = 2÷3=

1.3÷2表示什么?长是宽的几倍也可以说成谁和谁在比?是几比几?长和宽的比是3比2表示什么?

2.2÷3表示什么?宽是长的几分之几也可以说成是谁和谁在比?是几比几?宽和长的比是2比3表示什么?

3.小结

(1)长是宽的几倍,有时也可以说成长和宽的比是几比几;宽是长的几分之几,有时也可以说成宽和长的比是几比几.

(2)3分米和2分米都表示长度,它们是同一种量,我们就说这两个量的比是同类量的比.

4.练习

有5个红球和10个白球,求红球是白球的几分之几,怎么算?也可以怎么说?求白球是红球的几倍,怎么算?也可以怎么说?

(二)教学例2

例2.一辆汽车,2小时行驶100千米,每小时行驶多少千米?

1.求的是什么?谁除以谁?也就是谁和谁进行比较?

2.汽车行驶路程和时间的比是100比2表示什么?

3.思考:单价可以说成是谁和谁的比?

工作效率可以说成是谁和谁的比?

商可以说成是谁和谁的比?

4.小结

通过刚才的例子可以看出,用表示两种数量的数相除,可以得到新的量,这个新的量也可以用两个数的比来表示,我们就说这两个量的比是不同类量的比.

(三)归纳总结

引导学生观察板书 ,什么叫比?

教师板书:两个数相除又叫做两个数的比.

(四)练习

1.学校里有10棵杨树,7棵柳树,杨树和柳树棵数的比是( ),柳树和杨树棵树的比是( )

2.小华用2分钟口算了50道题,小华口算的题量和所用时间的比是( ).

3.学校食堂买20千克青菜,用了10元钱;买了30千克萝卜,用了42元钱;买萝卜和青菜数量的比是( ),青菜和萝卜单价的比是( ).

(五)比的各部分名称和求比值的方法(演示课件“比的意义”)

1.两个数相除又叫做两个数的比,说法变了,书写格式和名称也就变了.

例如: 3比2 记作:3∶2

2比3 记作:2∶3

100比2 记作:100∶2

2.“∶”叫做比号,读作比(比号在两个数中间,注意与语文中的冒号区别),比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.

板书:

3.提问:比的前项和后项能随便交换位置吗?为什么 ?

4.练习:求比值

教师说明:求比值不写单位名称.

(六)比、除法、分数之间的关系(演示课件“比、除法、分数的异同”)

1.教师提问

(1)两个数相除又叫做两个数的比,比和除法到底有什么关系?

(2)为什么要用“相当于”这个词?能不能用“是”?

(3)在除法中,除数不能是零,那比的后项呢?

2.比的分数形式

(1)教师:比还有一种表示方法,就是分数形式.例如:

板书:3∶2可以写成 ,仍读作“3比2“

2∶3可以写成 ,仍读作“2比3”

(2)思考:比和分数有什么关系?

三、巩固练习

(一)填空

两辆汽车,甲车4小时行驶200千米,乙车3小时行驶180千米.

1.甲车的速度可以说成( )和( )的比,是( )∶( ),比值是( ).

2.乙车的速度可以说成( )和( )的比,是( )∶( ),比值是( ).

3.甲、乙两车所行路程的比是( ).

4.甲、乙两车所用时间的比是( ).

5.甲、乙两车所行速度的比是( ).

(二)选择

1.大卡车载重量是5吨,小卡车载重量是2吨,大小卡车的载重量比是 .( )

2.如果a是b的3倍,那么a和b的比是1∶3.( )

3.小强的身高是1米,爸爸的身高是173厘米,小强和爸爸身高的比是1∶173.( )

(三)思考题

1.甲乙两队比赛结果是3∶2,是指这节课所学的比吗?

2.根据男、女生人数的比是4∶5,你可以知道男女生的具体人数吗?

3.一台机器上有大小两个齿轮,大齿轮有100个齿,每分钟25转;小齿轮有40个齿,

每分钟120转.根据所给条件,你可以写出哪些比?

四、课堂小结

今天这节课你学到了哪些知识?比和除法、分数之间的联系是什么?区别呢?

五、课后作业

(一)应用题,

1.小红3小时走了11千米.写出她所走的路程和时间的比.

2.航空模型小组8个人共做了27个航空模型.写出这个小组做的模型总数和人数的比.

3.商店一共运来8.2吨水果,其中有3.5吨是橘子.写出运来橘子的重量和运来水果的总重量的比.

(二)求比值.

4∶5 0.8∶0.4

六、板书设计

一键复制全文保存为WORD