日子在弹指一挥间就毫无声息的流逝,前方等待着我们的是新的机遇和挑战,请一起努力,写一份计划吧。计划怎么写才能发挥它最大的作用呢?问渠那得清如许,为有源头活水来,下面是可爱的编辑给大伙儿整理的高一数学教学计划优秀6篇,仅供借鉴,希望大家能够喜欢。
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;
第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;
第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;
第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;
第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;
第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1、通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2、通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3、理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4、几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
一、学生在数学学习上存在的主要问题
我校高一学生在数学学习上存在不少问题,这些问题主要表现在以下方面:
1、进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。
2、被动学习。许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。不知道或不明确学习数学应具有哪些学习方法和学习策略;老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
3、对自己学习数学的好差(或成败)不了解,更不会去进行反思总结,甚至根本不关心自己的成败。
4、不能计划学习行动,不会安排学习生活,更不能调节控制学习行为,不能随时监控每一步骤,对学习结果不会正确地自我评价。
5、不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
此外,还有许多学生数学学习兴趣不浓厚,不具备应用数学的意识和能力,对数学思想方法重视不够或掌握情况不好,缺乏将实际问题转化为数学问题的能力,缺乏准确运用数学语言来分析问题和表达思想的能力,思维缺乏灵活性、批判性和发散性等。所有这些都严重制约着学生数学成绩的提高。
二、教学策略思考与实践
针对我校高一学生的具体情况,我在高一数学新教材教学实践与探究中,贯彻“因人施教,因材施教”原则。以学法指导为突破口;着重在“读、讲、练、辅、作业”等方面下功夫,取得一定效果。
加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由“会”到“熟”。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与有关资料,通过分析、综合、类比、概括,揭示知识间的内在联系。以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由“活”到“悟”。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。
1、读。俗话说“不读不愤,不愤不悱”。首先要读好概念。读概念要“咬文嚼字”,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概念,是不加定义的。它从常见的“我校高一年级学生”、“我家的家用电器”、“太平洋、大西洋、印度洋、北冰洋”及“自然数”等事物中抽象出来,但集合的概念又不同于特殊具体的。实物集合,集合的确定及性质特征是由一组公理来界定的。“确定性、无序性、互异性”常常是“集合”的代名词。
再如象限角的概念,要向学生解释清楚,角的始边与x轴的非负半轴重合和与x轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数列的前n项和Sn.有qne;1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规范。如在解对数函数题时,要注意“真数大于0”的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说“议一议知是非,争一争明道理”。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元素是没有顺序的;同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。
2、讲。外国有一位教育家曾经说过:教师的作用在于将“冰冷”的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、形成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生已经掌握五套诱导公式,可以将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750度,150度等)能不能不通过查表而求出精确值呢?这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让学生从感性认识上升到理性认识。鼓励学生应积极、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。
例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易接受。其次讲要注重突出数学思想方法的教学,注重学生数学能力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。可以引导学生对照等差数列的相应的内容,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。
为了做好这学期的数学教学工作,结合学校二轮课改要求和“十六字方针”特作计划如下:
一、工作目标:
高一下学期的工作是第二册课本教学任务;
二、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2。积极探索改革教学,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学。爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。
3.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
4.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
三、教学措施:
1.转变教师的教学方式转变学生的学习方式
教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和"对话"中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡探究性学习、参与性学习和实践性学习。
2.发挥备课组的集体作用
集体备课,教案要求统一。每次备课都有一个主题,然后集体讨论,补充完善。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要对重点、难点有分析和解决方法。
3.详细计划,保证练习质量
教学中用配备资料《创新设计》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周的一份周测练习试卷,存在的普遍性问题要及时安排时间讲评。
4.加强辅导工作
对已经出现数学学习困难的学生,教师的个别辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的学困学生。
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
五、教学进度
周次课、章、节教学内容备注
11.1,1.2解三角形
21.2解三角形
32.1,2.2数列的概念与简单表示法,等差数列
42.3等差数列的前n项和
52.4,2.5等比数列及前n项和
62.5考试
73.1,3.2不等关系与不等式,一元二次不等式及其解法
83.3,3.4二元一次不等式(组)与简单线性规划问题,基本不等式
9考试,复习
10期中考试
111.1,1.2空间几何体的结构,三视图,直观图
121.3空间几何体的表面积与体积
132.1,2.2空间点、直线、平面的位置关系,直线、平面平行的判定及其性质
142.3直线、平面的判定及其性质
153.1,3.2直线的倾斜角与斜率,直线方程
163.3直线的交点坐标与距离公式
174.1,4.2圆的方程,直线、圆的位置关系
184.3空间直角坐标系
19复习
20考试
时间流逝得如此之快,我们又将迎来新的教学工作,何不赶紧为即将开展的教学工作做一个计划呢?以使教学工作顺利有序的进行,提高自己的教学质量,以下是小编帮大家整理的高一数学教学计划(精选11篇),欢迎大家阅读。
一、 设计思想:
函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。
二 、教学内容分析:
本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学I必修本(A版)》第94—95页的第三章第一课时3.1.1方程的根与函数的的零点。
本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形。它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系。渗透“方程与函数”思想。
总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
三 、教学目标分析:
知识与技能:
1、结合方程根的几何意义,理解函数零点的定义;
2、结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;
3、结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间 的方法
情感、态度与价值观:
1、让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;
2、培养学生锲而不舍的探索精神和严密思考的良好学习习惯;
3、使学生感受学习、探索发现的乐趣与成功感
教学重点:
函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。
教学难点:
发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。
四 、教学准备
导学案,自主探究,合作学习,电子交互白板。
五 、教学过程设计:
略
六、探索研究(可根据时间和学生对知识的接受程度适当调整)
讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?
[师生互动]
师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。
生:分组讨论,各抒己见。在探究学习中得到数学能力的提高
第五阶段设计意图:
一是为用二分法求方程的近似解做准备
二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。
七、课堂小结:
零点概念
零点存在性的判断
零点存在性定理的应用注意点:零点个数判断以及方程根所在区间。