作为一名人民教师,教学是我们的工作之一,借助教学反思我们可以拓展自己的教学方式,优秀的教学反思都具备一些什么特点呢?读书是学习,摘抄是整理,写作是创造,下面是小编为大伙儿找到的鸡兔同笼教学反思(优秀4篇),欢迎参考阅读。
《鸡兔同笼》 向学生提供了现实、有趣、富有挑战性的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用列举法、假设法、方程等方法,从多角度思考,运用多种方法解题,使学生在具体情境中,根据自己的经验,逐步探索不同的方法,找到解决问题的策略,并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法 。
鸡兔同笼问题是一类重要数学问题,在现代生活中随处可见。
(1) 三轮车和自行车共 7 辆 ,17 个轮子。三轮车、自行车各有几辆?
(2) 小方有 2 分、 5 分硬币共 10 枚,共有 32 分。 2 分、 5 分硬币各有几枚?
回过头来我们在来看一看《孙子算经》里的这道题:今有鸡兔同笼,上有三十五头,下有九十四足。问鸡、兔各几何?你能拭着做一做吗?
对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本节课属于综合应用课,其目的是加强数学知识与现实生活中问题的结合,以提高学生综合应用的能力。借助“鸡兔同笼”这个载体,初步获得一些数学活动的经验,在活动中引导学生自主探索,积极思考,从中体会出解决问题的一般策略。
在本节课的教学中,我感觉:
1、课堂上,多数学生的积极性还是比较高的。先让学生独立思考或小组讨论,再在全班共同交流评价。学生在民主、和谐的氛围中开拓了思维,达到了运用多种方法解决问题的目的。体现了学生是学习的主人。但部分学生会做却不会表达、不敢表达。口语表达能力欠佳。
2、课堂上,通过学习,使学生知道了假设的数学思想不仅可以解答古代趣题——鸡兔同笼问题,还能解答我们身边的问题。体会到数学就在我们身边。
3 、课堂上,注重关注每一个同学的发展,在交流探讨中,鼓励不同学生采用不同的解题方法。效果还不错。
本节课通过创设生动的问题情境,让学生投入到解决问题的实践活动中去,自己探究,经历数学学习的全过程,从而体会假设的数学思想的应用与解决问题的`关系。在学习中我注重鼓励每一个学生参与学习过程,用适合他们的方法解决问题,同时也体验解决问题的不同方法。
“鸡兔同笼”以前是属于奥数类型的题目,如今编入教材,对学生尤其是基础不好的学生来说有一定的难度,特别是使用假设法解答时,学生理解起来很难,为此我先采用列表法来帮助学生理解,把抽象的知识直观化,然后再引入假设法。对于理解能力较差的学生来说,列表法数据较大,假设法又不易理解,所以我也将抬脚法引入课堂,希望能够为学生提供解决问题的多种思路。
对于本节课的学习,部分学生已经在课外辅导班学习过了,课堂上这些学生的积极性很高,也能够深刻理解鸡兔同笼的意义,但这就造成了个别程度较差的学生偷懒现象,所以在接下来的练习课上要更多的关注那些做题速度较慢、思维不清晰的学生。
《鸡兔同笼》问题教学有一定的难度,在课始,我出了一些由易到难的问题,实质是解决鸡兔同笼问题的智力热身活动,为鸡兔同笼问题的揭示做好了巧妙的铺垫。学生在解题过程中,初步感知了生活中的鸡兔同笼趣题,明白了鸡、兔的头数与鸡、兔脚的只数之间的复杂关系。
好的开端是成功的一半,抓住知识上的联系激发了学生的学习热情。然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法、画图法和假设法等多种解题策略和方法,并用教具和多媒体课件的展示,帮忙学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。
在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导对学生进行分析,加以教具演示,帮忙学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再用课件展示分析过程。透过这两步的学习,大部分学生就应基本能利用假设法来解答“鸡兔同笼”问题。
本节课的重难点都就应是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡那里,用26—16=10条腿,那里就应说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,透过我的分析,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时能够直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”那里是把兔假设成了鸡,肯定就应是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。
本节课重在方法的渗透,学生务必经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,务必实实在在的引导,这样学生务必有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略。
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。本节课主要是借助这个题材,培养学生从多角度思考,运用多种方法解决问题的能力;重在研究解决问题的方法和策略上,并在合作交流过程中,积累解决问题的经验,掌握方法,并灵活运用这些知识解决生活中类似“鸡兔同笼”的问题。所以在设计教学过程时我力求渗透以下几点:
一、在放手探究中体会解题策略
学生刚刚接触“鸡兔同笼”问题时,要列式计算往往感到困难,所以我设计了几种由浅入深的方案,先通过儿歌引入算出一只兔和一只鸡的头数和脚数,再逐步增加鸡和兔的只数,学生用自己的生活经验可以口算出总头数和总脚数;然后出示已知头数和脚数求鸡和兔的只数。在放手探究时提供画图、列表、倒推、解方程等等方法,数形结合使学生理解并运用这些方法解决问题。这样不仅关注解决问题的结果,更关注知识的生成;不仅关注优秀学生,更关注全体学生的全面发展。从学习效果来看,确实让全体学生在数学上得到了不同的发展:因为层次不同的孩子选择了适合自己的不同方法,都得到了正确答案。
二、在策略多样化中体验最优方法
学生尝试应用画图法、列表法、假设法和代数法等来解决问题,他们在探究的过程中,根据自己的经验,尝试不同的方法,找到了解决问题的策略。但是让学生认识、理解、运用假设法是这节课的教学重点,也是教学难点。特别是假设全是鸡为什么求出来会是兔,学生很难弄懂。为此,在新课前我用兔子起立学鸡的故事进行铺垫,让学生明确,把一只兔当成了鸡就会少2只脚,用总共少的只数除以每只少的只数就是兔子的只数。尽管假设法的思路学生刚开始不太接受,但是孩子们体验到当数量很多的时候,画图和列表的方法就行不通了,所以假设法就更具有普遍性,这样就为以后的数学学习提供了一种非常重要的数学思想。所以尽管方法很多,假设法和列方程相对更优。
三、在古题新解中建立数学模式
其实在生活中,鸡兔同笼的现象是及其少见的,我们也没有必要数出它们的头和脚,算出只数。那么这类题型在现实生活中有哪些应用,它的解题方法给我们哪些启示呢?这些才是这节课要渗透的思想。为此我摘录了古今中外很多类似鸡兔同笼的问题,让学生一一分析。找到这类题目的共同特征,得出共性,总结方法。因此鸡兔同笼不仅仅代表鸡兔同笼,它反映了一种数学模式的建立和数学思想的渗透。学习数学只有在个案的探索中找到了规律性的结论和方法,才能学到有价值的数学。
不过由于一节课时间有限,不可能灵活掌握所有类型,所以有的学生还是有模仿做题的倾向,遇到变式练习时不能正确解决。