总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它能够使头脑更加清醒,目标更加明确,让我们来为自己写一份总结吧。但是却发现不知道该写些什么,这次帅气的小编为您整理了《椭圆》数学教学反思(精选3篇),希望能够给予您一些参考与帮助。
一、教材分析
(一)教材的地位和作用
本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。
(二)教学重点、难点
1.教学重点:椭圆的定义及其标准方程
2.教学难点:椭圆标准方程的推导
(三)三维目标
1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。
2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。__
3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。
二、教学方法和手段
采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。
“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。
三、教学程序
1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。
2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。
3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。
4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。
5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。
6.例题讲解:通过例题规范学生的解题过程。
7.巩固练习:以多种题型巩固本节课的教学内容。
8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。
9.课后作业:面对不同层次的学生,设计了必做题与选做题。
10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。
四、教学评价
本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。
本学期学习选修1-1《椭圆及其标准方程》,上完这节课后我认真地进行了反思,具体内容如下:
一、教学过程回顾
1、引入:(师生共同做实验)
手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆。
分析:
(1)轨迹上的点是怎么来的?
(2)在这个运动过程中,什么是不变的?
2、新课:
(1)归纳总结出椭圆的定义。(教师启发引导,学生回答)
(2)推导椭圆标准方程。(推导之前先回顾求轨迹方程的方法)
(3)椭圆标准方程。(教师板演方程,学生记忆方程)
(4)讲解例题。(教师启发引导,板演过程,学生分析,思考)
(5)学生做练习。(学生板演,师生共同纠错)
(6)小结。
(7)布置作业。
二、成功之处:
1、教学方法上:结合本节课的具体内容,确立启发探究式教学、互动式教学法进行教学。,体现了认知心理学的基本理论。
2、学习的主体上:课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器”,课堂上为学生的主动参与提供时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),真正做到了:凡是学生能够自己观察的、讲的(口头表达)、思考探究的、动手操作的,都尽量让学生自己去做,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体。进而完成知识的转化,变书本的知识为自己的知识。
3、学生参与度上:课堂教学真正面向全体学生,让每个学生都享受到发展的权利。在我的启发鼓励下,让学生充分参与进来,进行交流讨论,共同进步。
4、“三维”课程目标的实现上:既关注掌握知识技能的过程与方法,又关注在这过程中学生情感态度价值观形成的情况。
5、学法指导上:采用激发兴趣、主动参与、积极体验、自主探究的讲解讨论相结合,促进学生说、想、做,注重“引、思、探、练”的结合,鼓励学生发现问题,大胆分析问题和解决问题,进行主动探究学习,形成师生互动的教学氛围。
三、不足之处:
1、本节课课堂容量偏大,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。因此今后要合理地安排每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。同时还要重视探究题的作用,因为班上有一部分同学基础比较扎实,而且对数学也比较感兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。
2、学生练习时间不够充分,耽误了小结时间。
3、一部分学生的计算能力还不够熟练,缺乏简化计算的能力,今后还要继续加强对学生这方面能力的培养。
总之,在课堂教学中我“以知识为载体,以思维为主线,以能力为目标,以发展为方向”,展现知识的发生形成过程。采取以学生发展为本,明确本节课的学习目标,以学习任务驱动为方式,以椭圆标准方程的求法为中心。穿插研究性教学尝试,体现了“学生是学习主体,教师是引导者、参与者、组织者、合作者”的新课程理念。有利于改变学生的学习方式,有利于学生自主探究,有利于学生的实践能力和创新意识的培养。达到了教学目标,优化了整个教学过程。但是,在教学中还是存在很多不足的,在以后的教学中还要继续努力,不断总结经验教训,提高自身的教学水平。
椭圆是圆锥曲线的重要组成部分,椭圆学好了,有助于以后研究双曲线及抛物线,因为他们的研究方法是一样的。所以初学圆锥曲线一定要先把椭圆的基础给打好了。
在讲椭圆之前,应该先介绍一下研究所有曲线的方法和过程,即先建立曲线方程然后根据方程研究性质,这就是解析几何的特征,用代数方法研究几何问题,先让学生做到心中有数。因此曲线方程的建立是很重要的,而坐标法正是解决这个问题的重要方法。要掌握坐标法的“三步曲”:建系设点,找到关系进行代数运算,运算结果翻译成几何结论。
椭圆定义的形成是非常重要的,可以让学生深刻的记着它的几何特征有助于以后解题。引入部分可以这样设计:大家对椭圆都有一个感性的认识,觉得比圆稍扁一点的就是椭圆,这是不准确的。究竟满足什么条件才是椭圆,你能画出一个椭圆吗?接着画椭圆就是这节课的一个重要环节,要有教具的准备:定长的线,硬纸板和图钉。思考:到一个定点距离等于定长的点的集合是?到两个定点距离等于定长的点的集合又是什么呢?学生亲自动手操作,体会椭圆的形成过程及满足的条件。
第一个环节完成以后,第二个重要环节就是椭圆标准方程的产生,按照坐标法建系设点,一定让学生自己化简,亲自动手体验的过程不能少,因为解析几何就是考察学生的计算能力的。化简的过程中可以给与学生鼓励,看谁细心认真,尽管过程繁琐,但一定不要放弃,坚持到最后的人肯定能化简出来取得成功。另外教师一定要在学生动手之后,再演示一遍以达到纠错的目的,使学生印象深刻。这样才会收到一个良好的效果。
这堂课学生可以参与到教学的各个环节,学生主体性可以得到充分的发挥,而且还有情感价值观的锻炼,非常有价值。