总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,不如立即行动起来写一份总结吧。你想知道总结怎么写吗?下面是小编精心为大家整理的八年级数学教学反思优秀8篇,如果对您有一些参考与帮助,请分享给最好的朋友。
教材分析
1、 本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。
2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。
学情分析
1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。
2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的`常见数学模型之一,也是学生今后进一步学习其它函数的基础。
3、学生认知障碍点:根据问题信息写出一次函数的表达式。
教学目标
1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。
2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。
3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。
教学重点和难点
1、一次函数、正比例函数的概念及关系。
2、会根据已知信息写出一次函数的表达式。
教学过程
1.初中阶段,求函数解析式一般采用待定系数法.用待定系数法解题,先要明确解析式中待定系数的个数,再从已知中得到相应个数点的坐标,最后代入求解.待定系数法确定二次函数解析式时,有三种方式假设:一般式y=ax2+bx+c(a≠0)、顶点式y=a(x-h)2+k(a≠0)、交点式y=a(x-x1)(x-x2)(a≠0,x1、x2是二次函数图象与x轴两交点的横坐标),我们要根据题意选择合适的函数解析式进行假设。
2.存在性问题是一个比较重要的数学问题,通常作为中考的压轴题出现,解决这类问题的'一般步骤是:首先假设其存在,画出相应的图形;然后根据所画图形进行解答,得出某些结论;最后,如果结论符合题目要求或是定义定理,则假设成立;如果出现与题目要求或是定义定理相悖的情况,则假设错误,不存在。
3.分类讨论是一种重要的数学思想,对于某些不确定的情况,如由于时间变化引起的数量变化、等腰三角形的腰或底不确定的情况、直角梯形的直角不确定情况、运动问题、旋转问题等,当情况不唯一时,我们就要分类讨论。在进行分类讨论时,要根据题目要求或是时间变化等,做到不重不漏的解决问题。
4.动点问题,首先从特殊的运动时间得出特殊的结论,再变为说明在任意时刻,里面存在的普遍规律,对于此类问题,常用的解决方法是:先用运动时间的代数式表示出运动线段以及相关一些线段的长,然后通过方程或比例求出运动时间.
5.求最短路线问题,它与求线段差最大值属于同一种典型题的两种演化,都是利用了轴对称的性质来解决问题,前者用的是两点之间线段最短,后者使用的为三角形两边之和大于第三边。
课堂教学方法的选择是课堂教学效率高低的关键。课堂教学中所采用的方法要符合教学内容,符合学生数学学习的认识规律和一般教学原则。现代社会信息渠道的多元化必然导致学生获取知识渠道的多元化。
数学课堂教学必须改变一味以书本、教师为中心的形象,从实施素质教育的高度出发,通过多种教学形式,将学生学习能力的培养有机地渗透到整个教学过程中去。为此,教师应努力探寻行之有效的教学方法和手段,营造丰富多彩的。教学氛围,充分调动学生学习的积极性。教师可采用“启发式”、“学导式”教学法。首先,教师要发挥自己的指导作用,做到深入浅出,画龙点睛,一语道破,起到指导作用,以达到“导”在关键上的目的。其次,在学习课前预习,划出难点,带着问题听课时,或学生在自学中遇到了困难,迫切需要教师解难答疑时,教师应及时进行指导,把握好关键时刻,恰到好处,这时学生的思想集中、全神贯注、认真听讲,可收到最好的效果。当然,除备好课外,教师还应精心设计,分析哪些材料让学生自学;哪些材料由教师精讲;哪些材料用讲练结合形式进行;考虑精讲火候;研究怎样才以讲深讲透,讲得条理分明,深入浅出,使讲解富于启发性。教师要在课堂教学过程中注重教法的设计,运用多种教学手段创设真实的语言学习情境,扩大语言的输入量;以清晰、准确的示范,或文本演示帮助学生理解、操练和活用语言;让学生在积极参与语言实践中扎实地掌握知识,形成技巧,发展能力,尝试成功,从而获得课堂教学的高效率。教学过程要有流畅性。教师要注意教学环节的连接是否符合教学规律,教学活动与活动之间的转换是否恰当合理。在转换之间,教师的指令是否清楚。学生是否能够在教师有目的、有计划的指导下积极主动参与各项教学活动。教学要讲究生动性,要求教学过程充满变化,充分调动学生的兴趣,引起他们不断的期待。教学过程中的失误会直接影响着教学效果。只有教师的教学手段丰富,教学方法出新,教学结构严谨,才能达到最佳的教学效果。
上一周刚刚讲完分式的运算这部分知识,感受很深。学生们在刚学习这部分内容时,并不顺利,一方面是来自对因式分解知识的遗忘,另一方面是不掌握算理。要想更好得让学生掌握这部分知识,除了引导学生解决以上的问题之外,作为一个教师还必须做到心中有数:分式的四则运算是分式这一章的重点,主要是会进行基本的运算,而不是计算的繁和难,教学时,可以根据学生的具体情况,适当增加例题、习题,让学生熟练掌握分式的运算法则。但与整式、分数的运算相比,分式的`运算步骤多,符号变化复杂,所以在增加例题、习题时,要注意控制难度,特别是不要在分子、分母的因式分解上增加难度。关键是让学生通过基本的练习,掌握算理,弄清运算依据,做到步步有据,减少计算的错误率。
八年级数学上学期因甲流学生放了2周假,时间紧,任务重,好不容易挤出1周时间进行期末总复习,复习过程中存在好多问题值得深思:
学生方面:
1、基础知识掌握不牢固
许多同学遗忘速度非常快,就连课堂上一直强调的知识点也变得“似是而非”,如:两个三角形全等的“4+1”种判定方法,角的平分线的性质与判定定理,求一个数的平方根等等。
2、学习的积极主动性差
对于老师布置的课堂作业,有的学生在好多项班规的。约束下还让老师不断地催促多次才勉强交上,还有部分学生不管三七二十一就是长期不交作业,偶尔交上一次,想一招:和他商议“咱一周交一次好吗”,像求人家做作业似的。至于家庭作业要想交齐就更困难了!不禁感慨:现在的学生到底怎么了?
1、根据新课程概念:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。本节课的设计遵循了这一理念,注意通过折纸等丰富多彩的活动激发学生学习本课的积极性,注意让学生动手操作实践,在操作中进行自主探索和师生、生生互动交流,从而使学生能很好地掌握角平分线的性质。并获得用折纸这样的操作发现法探究图形性质的活动经验。
2、在本节课的教材内容处理上,既注意了教材是最基本的课程资源,它是满足所有七年级学生最基本的知识内容,又注意了我校学生的实际情况。因此,本节课突出了课程资源的开发,即对原有例题作了补充(如例2),又增加了反馈练习活动,让学生在议练活动中学会运用角平平分线性质解决问题,同时还进行了思维拓展,这样充分体现了让不同的学生“在数学上得到不同的发展”基本理念。
3、本节课在教法上采用了“探究——发现”教学模式,这是基于本节课的知识内容,有实践背景,适用于让学生动手操作探究,因此本节课在教学活动设计中,注意突出学生活动,设置了四个活动:①动手活动:通过动手度量、折纸等活动,探索角平分线的性质;②表述活动:用文字语言、图形语言、符合语言表述角平分线性质,并互动说理证明;③应用活动:角平分线的性质的认识及应用;④拓展活动:结合本节课的知识,对线段的轴对称性进行探索。
4、教材中只给出了角平分线性质的文字语言叙述,并没有给出符号语言的表述,由于我校的学生在第二章、第五章学习时,已经接触了符号语言的叙述,并且能够进行简单的说理。因此在这里,教师引导学生将文字语言结合图形语言转化为符号语言,并且对性质进行了说理,同时在对性质说理以及例1的解答中,教师都给出了规范的证明过程,这样既符合学生的实际学习情况,又为后面学习证明(一)、(二)、(三)打下基础。
5、评价方式根据新课程的评价理念,教学中教师关注了学生在学习过程中是否积极参与教学活动,是否能在教师的引导下进行说理,是否能运用所学知识来解决实际问题,并注意在教学过程中给予学生适当的评价和鼓励。(华东师大版教材七年级(下)第十章第三节“等腰三角形”第一课时)成功之处:我用一句话来说明本节课中我的成功之处,那就是:“仰望星空,脚踏实地”。达尔文说过:“最有价值的知识,是关于方法的知识”,本节课我围绕“方法比知识更重要”这一教学价值观,紧扣“方法”二字进行突破;使学生从知识技能到思想方法上都得到培养;让学生在带着问题自读教材中学会阅读;在小组活动中学会知识的探索和归纳;在一题多解中训练发散思维,从而使能力目标得以达成,也使本节课的教学难点得以突破。
为了真正让学习知识落到实处,我又在每得出一个知识点后及时给出专项练习题强化训练;再分别以A、B、C三个水平层次进行分层练习,使不同层次的学生都有所收获,使知识目标顺利达成,也使学生真正掌握了本节课的教学重点。不足之处:反思本节课的教学过程,我认为有两个地方需要改进,第一个地方是等腰三角形“三线合一”性质的文字语言转化为符号语言的`教学,是本节课的教学难点。上课时我发现基础较差的同学不太容易理解,反思之后我觉得:如果老师先把第一个性质的符号语言转化示范出来,再以填空的形式由学生尝试完成后两个性质的转化可能效果会更好,教学难点更容易突破。第二个地方是小组合作环节,让学生通过分组活动折纸探索等腰三角形的性质时,主要还是优等生控制着整个局面,成绩较差的学生就只是看和做助手的份。如果我改成每个小组都定成绩较差的那个学生为发言人,使他们有表现的机会,然后成绩较好的一名学生为补充发言人,及时补充和完善小组得到的结论,可能更能调动全体学生学习的积极性。教学是一门遗憾的艺术,因此教师只有不断地在反思中消除遗憾,才能不断地改进、完善教学,不断地提高教学水平。仰望星空,它是那样的辽阔而深邃:教学教育的真理,让我苦苦地思考,“路漫漫其修远兮,吾将上下而求索”。
《整式的乘除与因式分解》一章后面设置的“数学活动”栏目,介绍了2种特殊的两数相乘的计算规律。
1、个位数为5的'相同两数相乘,即个位数为5的数的平方的计算规律,如:
15x15=1x2x100+25=225
25x25=2x3x100+25=625
......
125x125=12x13x100+25=15625
105x105=10x11x100+25=11025
......
计算规律:(10a+5)(10a+5)=100a(a+1)+25
其中a可代表任意正整数
依据:(a+b)2=a2+2ab+b2=a(a+2b)+b2
则有:(10a+5)2=100a2+2x10ax5+25=100a(a+1)+25
2、两个数上的十位数字相同,个位数字之和等于10的两数相乘,如:
53x57=100x5x6+3x7=3000+21=3021
38x32=100x3x4+8x2=1200+16=1216
84x86=100x8x9+4x6=7200+24=7224
71x79=100x7x8+1x9=5600+9=5609
......
计算规律:(10a+b)(10a+10-b)=100a(a+1)+b(10-b)
依据:多项式x多项式
这些计算规律给学生提供既快又准确的工具,建议老师多给出或引导学生总结这样的计算规律。
一.设计思路:
设计思路建立在我校目标教学的前提下,由学生自主导学,然后再由教师考查和点拨,但是由于种种原因,我最终决定给学生一个半开半闭的区间。这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定和学生一起共同完成。
二.教学知识点:
1.在本课的。教学过程中,掌握范围分式方程的解法是关键,所以由两个习题过渡后,我复习了一元一次方程的解法,然后引导学生尝试利用解一元一次方程方法的基础上一起探索探索解分式方程的解法。我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。
2.在利用类比法解分式方程这一过程中,分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应渗透种化归思想的教学。
3.本节课的难点是对分式方程可能产生增根的原因,我为了让学生更深刻的理解就用了两个分式方程的解答过程进行对比,体现验根的重要性及必要性,
充分体现学生为主体,教师为主导的教学体系。
三.课堂效果:
在这节公开课上,学生状态不错,所有的学生都能积极思考,踊跃回答问题,在课堂练习和最后的课堂小测里,学生的作答规范正确,而且对于增根产生的原因及相关知识点的难题的突破学生掌握的不错。
整节课下来,基本能够达成教学目标,但是作为年轻教师,我在一些细节的处理上仍然需要改进。个别教学语言不够规范,而且利用新知识的学习过程,对旧知识的复习仍然不够,语速有点快,个别问题的引导可以更深层次,没有充分放手让学生突破难点,也是比较遗憾的地方,希望听课的老师给我多提意见,我会珍惜的。