身为一位优秀的老师,课堂教学是重要的任务之一,在写教学反思的时候可以反思自己的教学失误,那么教学反思应该怎么写才合适呢?这次漂亮的小编为您带来了分数与除法教学反思【优秀7篇】,希望大家可以喜欢并分享出去。
这部分内容是在前面教学分数除以整数、整数除以分数的基础上教学的,通过这一内容的学习可以为以后的学习打下坚实的基础。我在设计本课时主要突出让学生充分评价和反思。如在本节教学中,,我先请学生独立计算,然后再四人小组合作交流自己的计算方法。汇报结果时,有的小组说因为整数除以分数,分数除以整数的计算方法都是等于乘以这个数的倒数。他们认为分数除以分数的计算方法也等于乘以这个数倒数。通过交流讨论,最后得出分数除以分数的计算方法是一个数除以分数等于这个数乘以这个分数的倒数。然后,再和前面学的整数除以分数,分数除以整数联系起来,得出统一适用的分数除法的法则是甲数除以乙数(0除外),等于乘以乙数的倒数。很自然地复习了旧知识,再结合具体的算式强调转化的过程,特别是除号要变为乘号,除数变成了它的倒数,两个要同时变。由此推导出分数除以分数也是这样的,并且归纳其中的联系,发现其中不管是怎么样的分数除法都是一样的,这样就可以只用甲数和乙数来区别。根据学生的分析,我及时把统一的计算法则板书在黑板上,并把变化的和不变的用不同的记号标出来。
本节的教学中,学生始终以积极的态度投入到每一个环节的学习中,在主动进行探究,并总结出计算法则。而对新知识的学习,不是老师去讲解。而是让学生自主探求解决问题的方法,这为学生提供了充分的学习空间。学生的思维是发散的,学生的方法是多样的,体现了学生的主动性。
一、设计思路:
《分数除法三》是北师大版小学数学第十册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。本节课我制定了三维目标:能力目标:培养学生动手动脑能力,以及解决实际问题的能力。知识目标:在计算过程中,提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。情感目标:培养学生交流合作的意识和(☆)技能,让学生感受数学来源于生活,并体验成功的欢乐。传统的教学中,一般都用总结规律的方法来解这类题目:单位“1”已知,用乘法计算;单位“1”未知,用除法或方程解答。这种重结果轻过程的做法,束缚了学生思维的发展。我在教学中进行了一些的尝试,采用了开放式教学。
教材中提供了一个主题图,这个主题图为学生提供了丰富的数学信息,创设了问题情境,让学生对分数除法问题的解决提供了学习的方法与帮助。首先我从关键句“跳绳的人数是参加活动总人数的2/9。”入手,问学生当你看到这句话,你想到什么?这个问题比较开放,没有固定的结论。问这个问题我有两个目的:一是让学生能够根据老师的数学材料,通过分析、思考,提出各自不同的见解,并得到老师及同学的认可,他们内心深处会产生一种发现的快乐,一种成功的自我体验。第二个目的主要是让学生以分数乘法应用题的知识进行新旧知的学习迁移,得出数量关系式及表示分数意义的线段图,为后面的方程法及代数方法解题打好基础。
新《课程标准》提出:“加强估算,鼓励解决问题策略的多样化。”在完整的出示题目后,我让学生进行估计,培养学生的估算意识,学生要估算,必须要有依据,我想,大多数学生会根据线段图进行估计,又为解决问题策略的多样化埋下伏笔。根据教材的编写意图,是要让学生有多种解决问题的策略,但在解决分数乘除混合问题时,学生往往难以判断是用乘法还是用除法解答的,为了突破这个难点,我鼓励学生用方程解决除法的问题。反馈时,学生出现多种解决问题的策略,我鼓励学生用方程解决此类问题,但也有学生选择用除法或乘法进行计算,我借助线段图的功能理清解题思路,并强调把这些方法做为验证结果的方法,从而达到教材上以方程解法为主的目的。其它方法要不要作为重点分析,在黑板上要不要呈现?试教时,我呈现了学生所有的解题方法,虽然方法多样化了,但学生并没有真正掌握其中的方法。后来在周老师的建议下,我只呈现了方程一种方法,并强调把它作为一个主要解题方法。
二、心得体会:
1、在对教材内容准确把握的基础上,注重以“人的发展为本”,灵活使用教材,积极为学生创设主动学习的情境,使学生自我感受数学、体验数学、实践数学,从而激发学习和探究教学的热情。
2、在教学中,给学生充分提供表现、操作、研究、创造的空间,相信所有的学生都能学习,都会学习,学生的潜能就会像空气一样,放在多大的空间里,它就会有多大,使每个学生的潜能发挥出来,使他们能充分享受学习成功的乐趣。
3、在教学中,注重学生自己的思维过程,而不能仅仅提供前人的思维结果。创设开放的教学情景,营造积极的思维状态和宽松的思维气氛,肯定学生的“标新立异”、“异想天开”,努力保护学生的好奇心、求知欲和想象力,进而激发学生的创新热情,形成学生的创新意识,培养学生的创新精神,训练学生的思维能力。
4、要让学生经历自主探究的过程。探究是感悟的基础。没有探究就没有深刻的感悟。教学中,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟。
三、不足之处
1、本节课学习方式有些单一,师生一问一答式较多,学生之间的合作学习、讨论还有所缺失。
2、巩固练习不够趣味性,缺少层次性。在巩固练习的教学过程中,为了增加练习的趣味性,应多安排一些数学游戏,以此来调动学生学习的积极性,使得学生在娱乐中巩固和深化所学知识,达到了寓教于乐的目的。
3、本节课缺少一些变式训练,评价不够到位,缺少激励性。
4、没有很好的调动学生的学习热情,老师牵着学生的鼻子走。
本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:
一、直观演示是学生理解分数与除法的关系的前提。
由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。
二、培养学生提出问题的意识与能力是培养学生创新精神的关键。
爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:
a:你们是几块几块的分的?
b:每人每次分得多少块饼?
c:分了几次,共分了多少块?(就是3个块就是几块)
d:怎样才能看出是几块?
问题的提出针对性强,有利于学生把握数学的本质。
三、 用发展的思维去理解所学的知识,注重了知识的系统性。
数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。
一个数除以分数是在一个数除以整数的基础上,让学生从一个数除以整数的计算方法迁移到一个数除以分数,教材通过图形和多个例子来证明一个数除以分数就是乘以这个分数的倒数。我采用数形结合的教学策略,引导学生在分析题意、弄清数量关系的基础上,理解算理、探究算法。实际上就是先让学生画线段图,用图形语言揭示分数除法计算过程的几何意义,然后,有意识的引导学生将“图”和“式”对照起来,进行分析和说理。帮助学生理解除以一个分数怎么就可以转化为乘它的倒数了呢?这节课的教学重点是学会一个数除以分数的计算方法,难点是理解一个数除以分数的算理。
教学目标我是这样定位的:
1、 通过合作探究、讨论交流,理解一个数除以分数的算理,概括并掌握分数除法的计算方法,并能正确地进行计算。
2、 在合作探究的过程中,提高迁移类推、分析比较的综合能力。
3、 获得成功的体验,认同数学在生活中应用的广泛性。
在新课之前,我先做了个复习铺垫,让学生算算小红步行每小时走多少千米,引出数量关系式,路程÷时间=速度。然后呈现了书本上的主题图,把抽象的计算置于具体的情意中,通过解决“谁走得更快些”,列出分数除法的算式,接下来,让学生根据学习经验初步猜想“一个数除以分数”的计算方法,为学生提供开放的,富有挑战性的问题情境,从而激发学生的学习动机。有了猜想以后,我引导学生借助线段图来解决小明速度的问题,感受算理,推导算法,从而来验证当初的猜想。这部分的数学内容我主要渗透了数形结合、转化等数学思想方法,把除法转化成乘法计算,对学生来说是认识上的一次飞跃,在这一过程中主要是不断引导学生发现将2÷2/3转化为2÷2×3表示的是先求什么再求什么,进而转化为2×3/2的依据又是什么”,使学生掌握知识的内在联系并把新知纳入已有的认识结构的过程中,自然感受到每一步的转化都是新、旧知识、方法的。转化。质疑:对于两个数都是分数的除法算式适合吗?再次组织学生通过自主探究来验证“前面总结出的方法是不是对其他除数是分数的除法也同样适用?”深入理解算理,掌握算法。这样的设计,我意图让学生真实地经历知识的探索、发现过程,从而起到培养和提高学生的学习能力的作用。
总结出算法之后,我首先让学生用自己的语言先来概括一个数除以分数的计算方法。然后又出示了一个数除以整数的数学问题,让学生通过解决一个数除以整数的计算,用比较简练的语言概括出分数除法的计算方法。将上节课与这节课的教学内容进行了整合,沟通了新旧知识的联系,进一步理解算理,统一了算法。
对于这堂课,我感觉学生对于算法比较好理解和接受,但对于算理的理解存在有很大的难度,需要在练习中慢慢去理解和体会。
分数与除法的关系是在分数的意义后进行教学的,使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。但凡教过分数与除法的关系的老师都知道内容很简单,如果单纯地从形式上去教学它们的关系:一个分数的分子当于除法中的被除数,分母相当于除数,相信学生一定学得很扎实,但这样一来3÷4=的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:
1.通过实际操作感悟新知识、
新课程标准强调要让学生在现实的情景中体验和理解数学,改变单一的接受式的'学习方式,指导建立具有“主动参与,乐于探究、交流合作”特征的多样化的学习方式,从而促进学生知识、技能、情感、态度和价值观的整体发展。因此,数学学习活动应该是一个生动活泼的、主动的、富有个性的过程,数学的教与学的方式,应该是一个充满生命活动力的过程。在教学中我引导学生用3张圆形纸片动手分一分,并学生思考把3块饼平均分给4个小朋友可以有几种分法,让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的,3块饼的,通过这一过程,学生充分理解了3÷4=的算理。
2、在问题不断地解决与生成中探索新知识
探索是学生亲自经历和体验的学习过程,也就是让学生用自己理解的方式实现数学的“再创造”,在这其中教师的指导作用是潜在和深远的。本课中,我让学生充分动手分圆片,让他们在自己的尝试、探究、猜想、思考中,不断产生问题、解决问题、再生成新的问题,给学生留与了操作的空间,因此学生对分数与除法的关系理解得比较透彻。
《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。
在这节课的教学中,我觉得有以下几方面值得我去思考:
一,在学生用除法的意义理解分数的意义时,能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。
二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学"把3张饼平均分给4个同学,每个同学应分多少张饼?"时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。
三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。
四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。
有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式,我从现实中的分数乘法问题和找一个数的倒数引入,帮助孩子们复习前知,当学生体会到乘除法之间的互逆关系后,由学生提出一个生活中的实际问题,引出分数除法计算的必要性,为后续的学习架好了阶梯。
本课如果仅仅关注学生是否会算了,那是不够的,在设计中,还应有另类关注。如:学生们对算理理解了吗?他们的思维是否得到了实质上的提升?他们的学习方法是否得到增进?他们是否有学习的积极态度?等等。因此,在本课教学目标的制定中,我的着眼点是不仅使学生会算,更是通过对意义的理解,让学生们深刻认识这样算的道理,突出“过程性目标”。让学生经历涂一涂、画一画、算一算、说一说的过程,在探究的过程中,让孩子们形成一种“知其然更要知其所以然”的学习态度,获取一种学习的能力,为学生的可持续发展打基础。教学中,我关注学生经历发现数学知识的过程,给学生提供动手的机会,充分借助图形语言,将抽象变直观,帮助学生体会一个分数除以整数的意义,以及“除以一个整数(零除外)等于乘这个整数的倒数”方法的合理性。
接着变换探索的角度,呈现一组算式,在运算、比较的过程中再次使学生验证操作活动中发现的规律。给学生表达学习过程中体验和感悟的空间,如:谁来说一说这种算法是怎样的?你的想法是怎样的?学生在自主表达的过程中逐步积累原始体验,再通过教师的适度点拨,提升学生的数学思维。