《有理数的乘法》数学教案(精选19篇)

作为一名教职工,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。那么你有了解过教案吗?

初中数学《有理数的乘法》教学设计 1

一、教材分析

有理数的乘法是继有理数的加减法之后的又一种基本运算。它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。对后续知识的学习也是至关重要的。

二、学情分析

对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。

三、教学目标(核心素养立意)

1、使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

2、初步培养学生发现问题、分析问题、和解决问题的能力。

3、通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣。

4、传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。

四、教学重、难点

重点:有理数的乘法法则。

难点:有理数乘法的符号法则

五、教学策略

我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。

六、教学过程(设计为七个环节)

1、复习导入创设情境

我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。进而引入本节课题,以问题引领来激发学生求知欲。

2、师生互动探究新知

要求学生自主学习课本内容,完成课文中的填空。我给与学生充足的时间和空间。通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。(板书:法则)(确定有理数乘法运算的两步模型:先定符号,在求绝对值)

这样设计的目的是

1、构造这组有规律的算式让学生通过观察,来发现算式和结果在符号、绝对值方面的关系,找到乘法结果的符号规律,突破本节课的难点。同时又突出了本节课的教学重点。

2、通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。使学生知道”如何观察”“如何发现规律”。

3、分析法则掌握实质

(有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(—5)×(—3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5×3=15,再求值)。第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。

4、解决问题综合运用

通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:倒数-乘积是1的两个数互为倒数)。在有理数范围内仍有意义。本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。

5、体验成功享受快乐

利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。通过学生参与活动,调动学生学习的积极性。同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。这也是数学核心素养的要求。

6、总结收获畅谈体会

在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。让学生充分发表自己的感受,并相互补充。及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。

7、布置作业巩固深化

七、课后反思

在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力� 通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。更好的促进学生全面、持續、和谐的发展。本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。谢谢大家!

初中数学《有理数的乘法》教学设计 2

一、知识与技能

(1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。

(2)能利用计算器进行有理数的乘法运算。

二、过程与方法

经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。

三、情感态度与价值观

培养学生主动探索,积极思考的学习兴趣。

教学重、难点与关键

1、重点:能用法则进行多个因数的乘积运算。

2、难点:积的符号的确定。

3、关键:让学生观察实例,发现规律。

教具准备:投影仪。

四、教学过程

1、请叙述有理数的乘法法则。

2、计算:

(1)│-5│(-2);

(2)(-)

(3)0(-99.9)。

五、新授

1、多个有理数相乘,可以把它们按顺序依次相乘。

例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;

又如:(+2)[(-78)]=(+2)(-26)=-52.

我们知道计算有理数的乘法,关键是确定积的符号。

观察:下列各式的`积是正的还是负的?

(1)234

(2)234(-4)

(3)2(-3)(-4)

(4)(-2)(-3)(-4)(-5)。

易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

2、多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

七年级数学有理数的乘法教案及教学设计 3

三维目标

一、知识与技能

经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。

二、过程与方法

经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。

三、情感态度与价值观

培养学生积极探索精神,感受数学与实际生活的联系。

教学重、难点与关键

1.重点:应用法则正确地进行有理数乘法运算。

2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。

3.关键:积的符号的确定。

教具准备

投影仪。

四、教学过程

一、引入新课

在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?

五、新授

课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.

(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。

七年级数学有理数的乘法教案及教学设计 4

1.4.1有理数的乘法(第一课时)

1.教材分析

1.1教材的地位与作用

教材借助归纳验证的数学思想,结合学生已有知识,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。然后通过具体例子说明如何具体运用法则进行计算。接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。

1.2教材的重难点分析

1.2.1教学重点

运用有理数乘法法则正确进行计算。

1.2.2教学难点

有理数乘法法则的探索过程,符号法则及对法则的理解。

2.教学目标分析

2.1知识与技能

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算,并初步理解有理数乘法法则的合理性;

2.2过程与方法

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

2.3 情感态度与价值观

通过教材给出的气温变化问题,让学生认识到数学来源于实践并反作用于实践。

3.学情分析

本节课是学生在小学本已学过正数与零的乘法运算,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。因此,在探索有理数乘法法则的过程中,学生会比较容易找出规律,对于几个不为0的有理数相乘,学生也容易抓住其运算的两步骤,即先定符号,再将绝对值相乘。

附:板书设计

“有理数乘法法则”的教学设计,一般有两类:一是列举简单事例,尽快给出法则,组织学生用较多的是练习法则、背法则,以求熟练地掌握和运用法则;另一类是让学生体验法则的探索过程,注重培养学生的观察问题、发现问题的能力,猜测,验证的能力。引入部分以及归纳、有理数相乘的法则

前一类可能会取得较好的近期效果,但只注重知识技能的培养,忽视了学生数学能力的培养

有理数乘法两步骤 练习处和发展;后者不仅重视了学生思维能力及素质的培养,还能提高学生的学习兴趣。本数学设计采用的是较为适中的方法,没有教材中引入的那么繁琐,但同时兼顾了上述两类设计的优点。

“有理数乘法法则”的教学,在性质上属于定义教学,看似容易,但实际上却是难教又难学。半课例采用的是让学生观察、实践、合作探讨、发现的探索式学习方法,引导学生独立思考,合作交流,体验数学问题解决的过程,学会如何归纳和总结。

“有理数乘法法则”的教学中,必须解决的3个难点是:如何自然地引入带有负数的乘法;怎样体现负负得正的合理性与必要性;怎样说明有理数与1和0相乘的结果。

在整个教学过程中,教师始终注意运用多种形式调动学生的学习积极性和主动性,以自主学习、合作交流的方式,把学习的主动权交给了学生,使学生成为学习的主体,激发学习积极性。通过小组比赛和个人抢答,既培养了合作精神,又增强了竞争意识。

在数学教学中,不仅要求学生掌握基础知识的应用技能,而且要重视对学生的数学思维方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题。体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信心,从而积极参加与数学学习活动,激发学生强烈的求知欲。

有理数的乘法数学教案 5

一、教学目标

1、使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;

2、培养学生观察、归纳、概括及运算能力

3 使学生掌握多个有理数相乘的积的符号法则;

二、教学重点和难点

重点:有理数乘法的运算。

难点:有理数乘法中的符号法则。

三。教学手段

现代课堂教学手段

四。教学方法

启发式教学

五、教学过程

(一)、研究有理数乘法法则

问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

解①32=6

答:上升了6厘米。

问题2 水库的水位平均每小时上升-3厘米,2小时上升多少厘米?

解:(-3)2=-6

答:上升-6厘米(即下降6厘米)。

引导学生比较①,②得出:

把一个因数换成它的相反数,所得的积是原来的积的相反数。

这是一条很重要的结论,应用此结论,3(-2)=?(-3)(-2)=?(学生答)

把3(-2)和①式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积6的相反数-6,即3(-2)=-6.

把(-3)(-2)和②式对比,这里把一个因数2换成了它的相反数-2,所得的积应是原来的积-6的相反数6,即(-3)(-2)=6.

有理数的乘法教案 6

教学目标

1、知识与技能

①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力。

②会进行有理数的乘法运算。

2、过程与方法

通过对问题的变式探索,培养观察、分析、抽象的能力。

3、情感、态度与价值观

通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的'探索性和创造性。

教学重点难点

重点:能按有理数乘法法则进行有理数乘法运算。

难点:含有负因数的乘法。

教与学互动设计

(一)创设情境,导入新课

做一做 出示一组算式,请同学们用计算器计算并找出它们的规律。

例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________

(3)(-5)(+3)=________;(4)(-5)(-3)=________

例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________

(3)(-6)(+4)=________;(4)(-6)(-4)=________

(二)合作交流,解读探究

想一想 你们发现积的符号与因数的符号之间的关系如何?

学生活动:计算、讨论

总结 一正一负的两个数的乘积为负;两正或两负的乘积是正数。

两数相乘,同号得正,异号得负。

想一想 两数相乘,积的绝对值是怎么得到的呢?

学生:是两因数的绝对值的积。

有理数的乘法教案 7

教学目标

1.使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

2.通过有理数的乘法运算,培养学生的运算能力;

3.通过教材给出的行程问题,认识数学于实践并反作用于实践。

教学重点和难点

重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

难点:有理数乘法法则的理解.

课堂教学过程设计

一、从学生原有认知结构提出问题

1.计算(-2)+(-2)+(-2).

2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)[

4.根据有理数加减运算中引出的新问题 主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有 理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

二、师生共同研究有理数乘法法则

问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

解:3×2=6(厘米) ①

答:上升了6厘米.

问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?

解:-3×2=-6(厘米) ②

答:上升-6厘米(即下降6厘米).

引导学生 比较①,②得出:

把一个因数换成它的相反数,所得的积是原来的积的相反数.

这是一条很重要的结论,应用此结 论 ,3×(-2)=?(-3)×(-2)=?(学生答)

把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.

把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.

此外,(-3)×0=0.

综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0.

继而教师强调指出:

“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”.

用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了.

因此,在进行有理数乘法时,需要时时强调:先定符号后定值.

三、运用举例,变式练习

例 某一物体温度每小时上升a度,现在温度是0度.

(1)t小时后温度是多少?

(2)当a,t分别是下列各数时的结果:

①a=3,t=2;②a =-3,t=2;

②a=3,t=-2;④a=-3,t=-2;

教师引导学生检验一下(2)中各结果是否合乎实际.

课堂练习

1.口答:

(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9;

(4)(-6)×1; (5)(-6)×(-1); (6) 6×(-1);

(7)(-6)×0; (8)0×(-6);

2. 口答:

(1)1×(-5); (2)(-1)×(-5); (3)+(-5);

(4)-(-5); (5)1×a; (6)(-1)×a.

这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负 数,也可以是正数或0.

3.填空:

(1)1×(-6)=______;(2)1+(-6)=____ ___;

(3)(-1)×6=________;(4)(-1)+6=______;

(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.

4.判断下列方程的解是正数还是负数或0:

(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

四、小结

今天主要学习了有理数乘法 法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.

五、作业

1.计算:

(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

(4)100×(-0.001); (5) -4.8×(-1.25); (6)-4.5×(-0.32).

2.填空(用“>”或“<”号连接):

(1)如果 a<0,b<0,那么 ab _______ _0;

(2)如果 a<0,b<0,那么ab _______0;

(3)如果a>0时,那么a ____________2a;

( 4)如果a<0时,那么a __________2a.

探究活动

问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?

答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下.道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1 ?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1).而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的.

道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言.

初中数学《有理数的乘法》教学设计 8

一、知识与能力

掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力

二、过程与方法

经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算

三、情感、态度、价值观

培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性

四、教学重难点

一、重点:熟练进行有理数的乘除运算

二、难点:正确进行有理数的乘除运算

预习导学

通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律

五、教学过程

一、创设情景,谈话导入

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律

二、精讲点拨质疑问难

根据预习内容,同学们回答以下问题:

1、有理数的乘法法则:

(1)同号两数相乘___________________________________

(2)异号两数相乘___________________________________

(3)0与任何自然数相乘,得____

2、有理数的乘法运算律:

(1)乘法交换律:ab=_________

(2)乘法结合律:(ab)c=_______

(3)乘法分配律:(a+b)c=________

3、有理数的除法法则:

除以一个不等于0的数,等于乘这个数的__________

比较有理数的乘法,除法法则,发现_________可能转化为__________

初中数学《有理数的乘法》教学设计 9

教学目的:

(一)知识点目标:有理数的乘法运算律。

(二)能力训练目标:

1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

2、能运用乘法运算律简化计算。

(三)情感与价值观要求:

1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

2、在讨论的过程中,使学生感受集体的力量,培养团队意识。

教学重点:

乘法运算律的运用。

教学难点:

乘法运算律的运用。

教学方法:

探究交流相结合。

创设问题情境,引入新课

[活动1]

问题1:有理数的加法具有交换律和结合律,在以前学过的范围内乘法交换律、结合律,以及乘法对加法的分配律都是成立的,那么在有理数的范围内,乘法的这些运算律成立吗?

问题2:计算下列各题:

(1)(-7)×8;

(2)8×(-7);

(5)[3×(-4)]×(-5);

(6)3×[(-4)×(-5)];

[师生]由学生自主探索,教师可参与到学生的讨论中。

像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)

[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?

[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)

[师](-5)×(3-7)和(-5)×3-5×7的结果相等吗?

(注意:(-5)×(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)

讲授新课:

[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。

应得出:

1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

3、一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。

[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。

3、用简便方法计算:

[活动4]

练习(教科书第42页)

课时小结:

这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

课后作业:课本习题1.4的第7题(3)、(6)。

活动与探究:

用简便方法计算:

(1)6.868×(-5)+6.868×(一12)+6.868×(+17)

(2)[(4×8)×25一8]×125

有理数的乘法教案 10

【教学目标】

1、巩固有理数乘法法则;

2、探索多个有理数相乘时,积的符号的确定方法、

【对话探索设计】

探索1

1、下列各式的积为什么是负的?

(1)—2345

(2)2(—3)4(—5)6789(—10)、

2、下列各式的积为什么是正的?

(1)(—2)(—3)456

(2)—2345(—6)78(—9)(—10)、

观察1

P38、 观察

思考归纳

几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

(见P38、思考)

与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值

例题学习

P39、例3

观察2

P39、 观察

练习

P39、练习

作业

P46、7、(1),(2)(3),8,9,10,11、

补充练习

1、(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=—3呢?

(2)a与2a哪个大?

(3)判断:9a一定大于2a;

(4)判断:9a一定不小于2a、

(5)判断:9a有可能小于2a、

2、几个数相乘,积的符号由负因数的个数决定 这句话错在哪里?

3、若ab,则acbc吗?为什么?请举例说明、

4、若mn=0,那么一定有( )

(A)m=n=0、(B)m=0,n0、(C)m0,n=0、(D)m、n中至少有一个为0、

5、利用乘法法则完成下表,你能发现什么规律?

3210—1—2—3

39630—3

2622

1321

—1

—2

—3

6、(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为—a,�

2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。

3、能熟练地进行简单的有理数的加减乘除混合运算。

4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有

学习重点

有理数除法的法则及应用;求一个有理数的倒数。

学习难点:

在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。

学习过程:

一 前置复习 :

1、有理数的乘法法则是:

举例说明。

2、多个有理数乘法:

(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。

(2)几个有理数相乘,积就为零。

二 探究新知:

(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的)

自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。一定要熟记:

(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。

____________________。

(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。

0除以任何_______________________________。

(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。

如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是 的倒数。

三 新知应用:

例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)

学以致用 计算:

(1) (42)7 (2) ( )( )

例2、计算(1) ( )( )( ) (2) ( )( )

(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)

四 课堂练习:

独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)

五 达标测试

(独立完成)

1 填空:(1)2 的倒数与 的相反数的积是_______。

(2)(1)(3)( )=______。

(3)两个数的商为正数,那么这两个数一定是_________。

(4)一个数的倒数是它本身,则这个数是____________。

2、计算:(1) (2)

(3)、 (4) ( + )

六 总结反思:

1、说一说:

本节课我学会了 ;

使我感触最深的是 ;

我感到最困难的是 ;

我想进一步探究的问题是 。

2、:评一评

自我评价 小组评价 教师评价

七 布置作业

1(必做题) 课本60页习题A组3,4题。(要求:做在作业本上)

2(选做题) 课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)

七年级数学有理数的乘法教案及教学设计 11

一、内容和内容解析

1.内容

有理数乘法法则

2.内容解析

有理数的乘法是继有理数的加减法之后的又一种基本运算。有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的。

与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”。本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性。与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析。由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心。

基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则

二、目标及其解析

1.目标

(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法

(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性

2.目标解析

达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果

达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程。

三、教学问题诊断分析

有理数的乘法与小学学习的乘法的区别在于负数参与了运算。本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性。上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难。为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求。

本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律。

四、教学过程设计

问题1 我们知道,有理数分为正数、零、负数三类。按照这种分类,两个有理数的乘法运算会出现哪几种情况?

教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数。

设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想。

问题2 下面从我们熟悉的乘法运算开始。观察下面的乘法算式,你能发现什么规律吗?

3×3=9,

3×2=6,

3×1=3,

3×0=0.

追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

如果学生仍然有困难,教师给予提示:

(1)四个算式有什么共同点?——左边都有一个乘数3.

(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.

设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备。通过追问、提示,使学生知道“如何观察”“如何发现规律”。

教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.

追问2:根据这个规律,下面的两个积应该是什么?

3×(-2)= ,

3×(-3)= .

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律。

设计意图:让学生自主构造算式,加深对运算规律的理解。

追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积。

设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础。

问题3观察下列算式,类比上述过程,你又能发现什么规律?

3×3=9,

2×3=6,

1×3=3,

0×3=0.

鼓励学生模仿正数乘负数的过程,自己独立得出规律。

设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力。

追问1:要使这个规律在引入负数后仍然成立,�

追问2 :类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积。

追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”。既使学生感受法则的合理性,又培养他们的归纳思想和概括能力。

问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

(-3)×3= ,

(-3)×2= ,

(-3)×1= ,

(-3)×0= .

追问1:按照上述规律填空,并说说其中有什么规律?

(-3)×(-1)= ,

(-3)×(-2)= ,

(-3)×(-3)= .

设计意图:由学生自主探究得出负数乘负数的结论。因为有前面积累的丰富经验,学生能独立完成。

问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书。

追问:� 如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字。

设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤。

例1计算:

学生独立完成后,全班交流。

教师说明:在(3)中,我们得到了

=1.与以前学习过的倒数概念一样,我们说

与-2互为倒数。一般地,在有理数中仍然有:乘积是1的两个数互为倒数。

追问:在(2)中,8和-8互为相反数。由此,你能说说如何得到一个数的相反数吗?

设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).

例2 用正数、负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1km气温的变化量为-6°C,攀登3km后,气温有什么变化?

设计意图:利用有理数乘法解决实际问题,体现数学的应用价值。

小结、布置作业

请同学们带着下列问题回顾本节课的内容:

(1)你能说出有理数乘法法则吗?

(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则。

(4)你能举例说明符号法则“负负得正”的合理性吗?

设计意图:引导学生从知识内容和学习过程两个方面进行小结。

作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题。

五、目标检测设计

1.判断下列运算结果的符号:

(1)5×(-3);

(2)(-3)×3;

(3)(-2)×(-7);

(4)(+0.5)×(+0.7).

设计意图:检测学生对有理数乘法的符号法则的理解。

2计算:

(1)6×(-9);

(2)(-6)×0.25;

(3)(-0.5)×(-8);

(4)0×(-6);

设计意图:检测学生对有理数乘法法则的理解情况。

《有理数的乘法》数学教案 12

一、学习目标:

1.熟练掌握有理数的乘法法则

2.会运用乘法运算率简化乘法运算

3.了解互为倒数的意义,并会求一个非零有理数的`倒数

二、学习重点

探索有理数乘法运算律

学习难点:运用乘法运算律简化计算

三、学习过程:

(一)、情境引入:

1、复习有理数的乘法法则(两个因数、两个以上的因数),并举例说明。

2、在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?

观察下列各有理数乘法,从中可得到怎样的结论?

(1)(-6)(-7)=(-7)(-6)=

(2)[(-3)(-5)]2=(-3)[(-5)2]=

(3)(-4)(-3+5)=(-4)(-3)+(-4)5=

3、请再举几组数试一试,看上面所得的结论是否成立?

(二)、新课讲解:

有理数乘法运算律

交换律ab=ba

结合律(ab)c=a(bc)

分配律a(b+c)=ab+ac

例1.计算:

(1)8(-)(-0.125)(2)

(3)()(-36)(4)

例2.计算

(1)8(2)(4)()(3)()()

观察例2中的三个运算,两个因数有什么特点?它们的乘积呢?你能够得到什么结论?

(三)、巩固练习:

1.运用运算律填空

(1)-2-3=-3(_____)

(2)[-32](-4)=-3[(______)(______)]

(3)-5[-2+-3]=-5(_____)+(_____)-3

2.选择题

(1)若a0,必有()

Aa0Ba0Ca,b同号Da,b异号

(2)利用分配律计算时,正确的方案可以是()

AB

CD

3.运用运算律计算:

(1)(-25)(-85)(-4)(2)14-12-1816

(3)6037-6017+6057(4)18-23+1323-423

(5)(-4)(-18.36)(6)(-)0.125(-2)

(7)(-+--)(-20);(8)(-7.33)(42.07)+(-2.07)(-7.33)

四、课堂小结:

通过本节课你学到了哪些知识?你达成学习目标了吗?

五、作业布置:

课本第42页习题2.5第3题

数学评价手册

六、学后记/教后记

有理数的乘法数学教案 13

一、学习目标:

1.熟练掌握有理数的乘法法则

2.会运用乘法运算率简化乘法运算。

3.了解互为倒数的意义,并会求一个非零有理数的倒数

二、学习重点

探索有理数乘法运算律

学习难点:运用乘法运算律简化计算

三、学习过程:

(一)、情境引入:

1、复习有理数的乘法法则(两个因数、两个以上的因数),并举例说明。

2、在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?

观察下列各有理数乘法,从中可得到怎样的结论?

(1)(-6)(-7)=(-7)(-6)=

(2)[(-3)(-5)]2=(-3)[(-5)2]=

(3)(-4)(-3+5)=(-4)(-3)+(-4)5=

3、请再举几组数试一试,看上面所得的结论是否成立?

(二)、新课讲解:

有理数乘法运算律

交换律ab=ba

结合律(ab)c=a(bc)

分配律a(b+c)=ab+ac

例1.计算:

(1)8(-)(-0.125)(2)

(3)()(-36)(4)

例2.计算

(1)8(2)(4)()(3)()()

观察例2中的三个运算,两个因数有什么特点?它们的乘积呢?你能够得到什么结论?

(三)、巩固练习:

1.运用运算律填空。

(1)-2-3=-3(_____).

(2)[-32](-4)=-3[(______)(______)].

(3)-5[-2+-3]=-5(_____)+(_____)-3

2.选择题

(1)若a0,必有()

Aa0Ba0Ca,b同号Da,b异号

(2)利用分配律计算时,正确的方案可以是()

AB

CD

3.运用运算律计算:

(1)(-25)(-85)(-4)(2)14-12-1816

(3)6037-6017+6057(4)18-23+1323-423

(5)(-4)(-18.36)(6)(-)0.125(-2)

(7)(-+--)(-20);(8)(-7.33)(42.07)+(-2.07)(-7.33)

四、课堂小结:

通过本节课你学到了哪些知识?你达成学习目标了吗?

五、作业布置:

课本第42页习题2.5第3题

数学评价手册

六、学后记/教后记

有理数的乘法教案 14

学习目标:

1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算

2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力。

3、培养语言表达能力。调动学习积极性,培养学习数学的兴趣。

学习重点:

有理数乘法

学习难点:

法则推导

教学方法:

引导、探究、归纳与练习相结合

教学过程

一、学前准备

计算:

(1)(一2)十(一2)

(2)(一2)十(一2)十(一2)

(3)(一2)十(一2)十(一2)十(一2)

(4)(一2)十(一2)十(一2)十(一2)十(一2)

猜想下列各式的值:

(一2)×2(一2)×3

(一2)×4(一2)×5

二、探究新知

1、自学有理数乘法中不同的形式,完成教科书中29~30页的填空。

2、观察以上各式,结合对问题的研究,请同学们回答:

(1)正数乘以正数积为__________数,(2)正数乘以负数积为__________数,

(3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。

提出问题:一个数和零相乘如何解释呢?

《1.4.1有理数的乘法》同步练习含解析

1、若有理数a,b满足a+b<0,ab<0,则()

A、a,b都是正数

B、a,b都是负数

C、a,b中一个正数,一个负数,且正数的。绝对值大于负数的绝对值

D、a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值

5、若a+b<0,ab<0,则()

A、a>0,b>0

B、a<0,b<0

C、a,b两数一正一负,且正数的绝对值大于负数的绝对值

D、a,b两数一正一负,且负数的绝对值大于正数的绝对值于0

《1.4.1.2有理数的乘法运算律》课时练习含答案

2、大于—3且小于4的所有整数的积为()

A、—12 B、12 C、0 D、—144

2、3.125×(—23)—3.125×77=3.125×(—23—77)=3.125×(—100)=—312.5,这个运算运用了()

A、加法结合律

B、乘法结合律

C、分配律

D、分配律的逆用

3、下列运算过程有错误的个数是()

①×2=3—4×2

②—4×(—7)×(—125)=—(4×125×7)

③9×15=×15=150—

④[3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50

A、1 B、2 C、3 D、4

4、绝对值不大于2 015的所有整数的积是。

5、在—6,—5,—1,3,4,7中任取三个数相乘,所得的积最小是,最大是。

6、计算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的结果为。

7、计算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的结果是。

有理数的乘法教案 15

教学目的:

1、要求学生会进行有理数的加法运算;

2、使学生更多经历有关知识发生、规律发现过程。

教学分析:

重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

教学过程:

一、知识导向:

有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

二、新课:

1、知识基础:

其一:小学所学过的乘法运算方法;

其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:

(引例)一只小虫沿一条东西向的`跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的东方6米处

拓展:如果规定向

综合:有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数与零相乘,都得零。

例:计算:

(1)(2)

三、巩固训练:

P52.1、2、3

四、知识小结:

本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

五、家庭作业:

P57.1、2,3

六、每日预题:

1、小学多学过哪些乘法的运算律?

2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

有理数的乘法数学教案 16

一、学情分析:

1、学生的知识技能基础:学生在小学已经学习过非负有理数的四则运算以及运算律。在本章的前面几节课中,又学习了数轴、相反数、绝对值的有关概念,并掌握了有理数的加减运算法则及其混和运算的方法,学会了由运算解决简单的实际问题,具备了学习有理数乘法的知识技能基础。

2、学生的活动经验基础:在相关知识的学习过程中,学生已经历了探索加法运算法则的活动,并且通过观察"水位的变化",运用有理数的加法法则解决了一些实际问题,从而获得了较为丰富的数学活动经验,同时在以前的学习中,学生曾经历了合作学习和探索学习的过程,具有了合作和探索的意识。

二、 教材分析:

教科书基于学生已掌握了有理数加法、减法运算法则的基础上,提出了本节课的具体学习任务:发现探索有理数的乘法法则,了解倒数的概念,会进行有理数的运算。

本节课的数学目标是:

1、经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证能力;

2、学会进行有理数的乘法运算,掌握确定多个不等于零的有理数相乘的积的符号方法以及有一个数为零积是零的情况:

三、教学过程设计:

本节课设计了六个环节:第一环节:问题情境,引入新课;第二环节:探索猜想,发现结论;第三环节:验证明确结论;第四环节:运用巩固,练习提高;第五环节:课堂;第六环节:布置作业。

第一环节:问题情境,引入新课

问题:(1)观察教科书给出的图片,分析教科书提出的问题,弄清题意,明确已知是什么,所求是什么,让学生讨论思考如何解答。

(2)如果用正号表示水位上升,用负号表示水位下降,讨论四天后,甲水库水位的变化量的表示法和乙水库水位变化量的表示法。

设计意图:培养学生从图形语言和文字语言中获取信息的能力,感受用数学知识解决实际问题,体验算法多样化,并从第二种算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)从而引出课题:有理数的乘法。

第二环节:探索猜想,发现结论

问题:(1)由课题引入中知道:4个-3相加等于-12,可以写成算式

(-3×4)=-12,那么下列一组算式的结果应该如何计算?请同学们思考:

(-3)×3=_____;

(-3)×2=_____;

(-3)×1=_____;

(-3)×0=_____。

(2)当同学们写出结果并说明道理时,让学生通过观察这组算式等号两边的特点去发现积的变化规律,然后再出示一组算式猜想其积的结果:

(-3)×(-1)=_____;

(-3)×(-2)=_____;

(-3)×(-3)=_____;

(-3)×(-4)=_____。

教前设计意图:以算式求解和探究问题的形式引导学生逐步深入的观察思考,从负数与非负数相乘的一组算式中发现规律后,猜想负数与负数相乘的积是多少,通过对两组算式的观察,归纳,概括出有理数的乘法法则,并用语言表述之,以培养学生的观察能力,猜想能力,抽象能力和表述能力。

教后反思事项:(1)本环节的设计理念是学生通过观察思考,亲身经历感受乘法法则的发现过程,并在合作交流中互相补充,完善结论。但在实际过程中,学生对结论的表述有困难,或者表达不准确,不全面,对于这些问题,不能求全责备,而应循循善诱,顺势引导,帮助学生尽可能简练准确的表述,也不要担心时间不足而代替学生直接表述法则。

(2)展示两组算式时,注意板书艺术,把算式竖排,并对齐书写,这样易于学生观察特点,发现规律。

第三环节:验证明确结论

问题:针对上一环节探究发现的有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘,任何数与零相乘,积仍为零。进行验证活动,出示一组算式由学生完成。

4×(-4)=_____;

4×(-3)=_____;

4×(-2)=_____;

4×(-1)=_____;

(—4)×0=_____;

(—4)×1=_____;

(—4)×2=_____;

(—4)×(-1)=_____;

(—4)×(-2)=_____。

教前设计意图:这个环节的设计一方面是因为它是合情推理的必要环节,另一方面是为了让学生知道从特例归纳得到的结论不一定适合

一般情况,所以要加以验证和证明它的正确性。同时,验证的过程本身就是对有理数乘法法则的练习和熟悉过程。

教后反思事项:(1)教科书中没有这个环节的要求,但在教学中应该设计这个环节,确实让学生体验经历验证过程。

(2)本环节的重点是验证乘法法则的正确性而不是运用乘法法则计算。所以在验证过程中,既要用乘法法则计算,又要加法法则计算,真正体现验证的作用和过程。

(3)在用乘法法则计算时,要注意其运算步骤与加法运算一样,都是先确定结果的符号,再进行绝对值的运算。另外还应注意:法则中的“同号得正,异号得负”是专指“两数相乘而言的,”不可以运用到加法运算中去。

第四环节:运用巩固,练习提高

活动内容:

(1)1。计算:

⑴(-4)×5; ⑵(5-)×(-7);

⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

(2)2。计算:

⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

3。“议一议”:几个有理数相乘,因数都不为零时,积的符号怎样确定?有一个因数为零时,积是多少?

(4)计算:

⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);

⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;

⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

教前设计意图:对有理数乘法法则的巩固和运用,练习和提高.

教后反思事项:(1)学生先自主尝试解决,全班交流,教师点拨要注意格式规范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由;

(2)例2讲解之后,要启发学生完成"议一议"的内容,鼓励学生通过对例2的运算结果观察分析,用自己的语言表达所发现的规律,学生有困难时,教师可设置如下一组算式让学生计算后观察发现规律,而不应代替学生完成这个任务。

(-1)×2×3×4=_____;

(-1)×(-2)×3×4=_____;

(-1)×(-2)×(-3)×4=_____;

(-1)×(-2)×(-3)×(-4)=_____;

(-1)×(-2)×(-3)×(-4)×0=_____。

通过对以上算式的计算和观察,学生不难得出结论:多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。当然这段语言,不需要让学习背诵,只要理解会用即可。

第五环节:感悟反思课堂

问题

1、本节课大家学会了什么?

2、有理数乘法法则如何叙述?”

3、有理数乘法法则的探索采用了什么方法?

4、你的困惑是什么

教前设计意图:培养学生的口头表达能力,提高学生的参与意识。激励学生展示自我。

教后反思事项:学生时,可能会有语言表达障碍或表达不流畅,但只要不影响运算的正确性,则不必强调准确记忆,而应鼓励学生大胆发言,同时教师可用准确的语言适时的加以点拨。

第六环节:布置作业

巩固作业:教科书知识技能1、2;问题解决1;联系扩广1

预习作业;略

四、教学反思

1、设计条理的问题串,使观察、猜想、验证水到渠成

2、相信学生的探索能力。本节课的内容适合学生探索,只要教师适当引导,学生具有能力探索出有理数的乘法法则的,不需要教师代替,也不能代替。

3、合理使用多媒体教学手段可以弥补课堂时间的不足,但绝不能代替必要的板书。

有理数的减法教案 17

一、课题2.4有理数的减法

二、教学目标

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力.

三、教学重点

有理数减法法则

四、教学难点

有理数减法法则

五、教学用具

三角尺、小黑板、小卡片

六、课时安排

1课时

七、教学过程

(一)、从学生原有认知结构提出问题

1.计算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:

(1)-(-6);(2)-(+8);(3)+(-7);

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.

(二)、师生共同研究有理数减法法则

问题1(1)(+10)-(+3)=______;

(2)(+10)+(-3)=______.

教师引导学生发现:两式的结果相同,即(+10)-(+3)=(+10)+(-3).

教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2(1)(+10)-(-3)=______;

(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

(2)的结果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教师引导学生归纳出有理数减法法则:

减去一个数,等于加上这个数的相反数.

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)

(三)、运用举例变式练习

例1计算:

(1)(-3)-(-5);(2)0-7.

例2计算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通过计算上面一组有理数减法算式,引导学生发现:

在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.

例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?

阅读课本63页例3

(四)、小结

1.教师指导学生阅读教材后强调指出:

由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

(五)、课堂练习

1.计算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;

2.计算:

(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;

(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.

3.计算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;

(4)(-5.9)-(-6.1);

(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

利用有理数减法解下列问题

4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?

八、布置课后作业:

课本习题2.6知识技能的2、3、4和问题解决1

九、板书设计

2.5有理数的减法

(一)知识回顾(三)例题解析(五)课堂小结

例1、例2、例3

(二)观察发现(四)课堂练习练习设计

十、课后反思

有理数的乘法教案 18

教学目的:

(一)知识点目标:有理数的乘法运算律。

(二)能力训练目标:

1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

2、能运用乘法运算律简化计算。

(三)情感与价值观要求:

1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

2、在讨论的过程中,使学生感受集体的力量,培养团队意识。

教学重点:

乘法运算律的运用。

教学难点:

乘法运算律的运用。

教学方法:

探究交流相结合。

创设问题情境,引入新课

[活动1]

问题1:有理数的加法具有交换律和结合律,在以前学过的范围内乘法交换律、结合律,以及乘法对加法的分配律都是成立的,那么在有理数的范围内,乘法的这些运算律成立吗?

问题2:计算下列各题:

(1)(一7)×8;

(2)8×(一7);

(5)[3×(一4)]×(一5);

(6)3×[(一4)×(一5)];

[师生]由学生自主探索,教师可参与到学生的讨论中。

像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)

[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?

[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)

[师](一5)×(3一7)和(一5)×3一5×7的结果相等吗?

(注意:(一5)×(3一7)中的3一7应看作3与(一7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)

讲授新课:

[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。

应得出:

1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

3、一般地,一个数同两个数的'和相乘,等于这个数分别同这两个数相乘,再把积相加。

[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。

3、用简便方法计算:

[活动4]

练习(教科书第42页)

课时小结:

这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

课后作业:课本习题1.4的第7题(3)、(6)。

活动与探究:

用简便方法计算:

(1)6.868×(一5)十6.868×(一12)十6.868×(十17)

(2)[(4×8)×25一8]×125

一键复制全文保存为WORD