绝对值教案优秀4篇

七年级数学上册《绝对值》教案 篇1

教学目标

1、知识与技能

会利用绝对值比较两个负数的大小

2、过程与方法

利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力

3、情感、态度与价值观

敢于面对数学活动中的困难,有学好数学的自信心

教学重点难点

重点:利用绝对值比较两个负数的大小

难点:利用绝对值比较两个异分母负分数的大小

教与学互动设计

(一)创设情境,导入新课

投影 你能比较下列各组数的大小吗?

(1)│-3│与│-8│

(2)4与-5

(3)0与3

(4)-7和0

(5)0.9和1.2

(二)合作交流,解读探究

讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数

思考 若任取两个负数,该如何比较它的大小呢?

点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?

【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大

注意

①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小

②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值

③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小,即:利用数轴来比较有理数的大小

学习目标: 篇2

1、知道一个数的绝对值与这个数的本身或它的相反数的关系,并会根据这种关系求一个数的绝对值。

2、会运用绝对值比较两个有理数的大小。

3、会综合应用绝对值、相反数、数轴的知识解题

七年级数学上册《绝对值》教案 篇3

一、学习与导学目标:

知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;

过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;

情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

二、学程与导程活动:

A、创设情境(幻灯片或挂图)

1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

再如测量误差问题、排球重量谁更接近标准问题

2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

B、学习概念:

1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。

如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)

2、尝试回答

(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;

(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;

(3)︱0︱= 。(幻灯片)

思考:你能从中发现什么规律?引导学生得出:(幻灯片)

性质:一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

零的绝对值是零。

如果用字母a表示有理数,上述性质可表述为:

当a是正数时,︱a︱=a;

当a是负数时,︱a︱=-a;

当a=0时,︱a︱=0。

解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

显然,结合问题的实际意义不难得到:-4-202。

因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)

通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

两个负数,绝对值大的反而小。

4、师生活动比较下列各对数的大小:P17例,P18练习。

5、师生小结归纳(幻灯片)

三、笔记与板书提纲:

1、 幻灯片

2、 师生板演练习P15/1

四、练习与拓展选题:

P19/4,5,9,10

七年级数学上册《绝对值》教案 篇4

教学目标:

通过数轴,使学生理解绝对值的概念及表示方法

1、 理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算

2、 通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法

3、 通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力

教学重点:

理解绝对值的概念、意义,会求一个数的绝对值

教学难点:

绝对值的概念、意义及应用

教学方法:

探索自主发现法,启发引导法

设计理念:

绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义 。通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

教学过程:

一、 创设情境,复习导入

1、今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。(用多媒体出示引例)

星期天张老师从学校出发,开车去游玩,她先向东行20千米,到了游乐园,下午她又向西行30千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,用有理数表示张老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

+20千米,-30千米; ②(20+30)0.15=7.5升

2、在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了,你还能举出其他类似的例子吗?

3、小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许, 气氛热烈教师巡视,偶尔参加其中一组的讨论,但不直接肯定或否定学生的问题,而是引导鼓励学生思考、交流,请各小组派代表汇报讨论结果。

我们小组举的例子是:我爸爸喜欢炒股,一天他支出10 000元购买A股票,同一天他又抛出B股票收入15 000元,规定支出为负,那么爸爸两次的交易额用有理数如何表示?如果交易所每次交易按总额的千分之一收费,那么爸爸的这两次交易需交多少交易费?

4、在实际生活中存在不关注相反意义的例子,刚才我们所举例子中的计算,都不必考虑它们的正、负性,看来我们的。确很有必要给上面涉及的量取一个名字。我们把这个量叫做有理数的绝对值。

二、 合作交流、探索新知

1、 绝对值的概念

⑴ 如图,在数轴上,+3和-3虽然符号不同,但表示这两个数的点到原点的距离都是3,我们把这个距离叫做+3和-3 的绝对值

+3的绝对值就是数轴上表示+3的点到原点的距离,+3的绝对值是3,记作: =3

-3的绝对值就是数轴上表示-3的点到原点的距离, -3的绝对值是3,记作: =3

⑵ 一个数a的绝对值是数轴上表示数a的点到原点的距离, 数a的绝对值,记作:

2、 探索绝对值意义

⑴ 学生探索:求6,-6, ,- ,2.5,-2.5的绝对值

小组讨论:互为相反数的两个数的绝对值有什么关系?

规律总结:互为相反数的两个数的绝对值相等

⑵ 学生抢答:

学生小组讨论得出:

一个正数的绝对值是它的本身,即:若a0,则 =a

一个负数的绝对值是它的相反数, 即:若a0,则 =-a

0的绝对值是0 , 即:若a=0,则 =0

(3)学生活动:

在数轴上自己标出五个数,让同桌指出它们的绝对值,引导学生观察,讨论得出:

任何一个数的绝对值都是非负数(正数和0)

= =

三、 举一反三,灵活应用

四、达标反馈

填空

(1) 数轴上离开原点2个单位长的点所表示的数是___

(2) 数轴上到原点的距离等于1.5的点所表示的数是 ______

(3) 正数的绝对值是_________,负数的绝对值是___________, 零的绝对值是______

(4) 从数轴上看,一个数的绝对值就是表示这个数离开原点的________

(5) 49是______的相反数,它是_______的绝对值

(6) 如果一个数的绝对值等于 ,那么这个数是________

(7) 绝对值小于3的整数有___,它们的和为___

(8) 若 =0,则a_____0

五、学习小结:

1、 绝对值的概念、意义

① 数轴上的点到原点的距离叫做这个点表示的有理数的绝对值

② 正数的绝对值是它的本身

负数的绝对值是它的相反数

0的绝对值是0

③ = =

④ 绝对值是非负数 0

⑤ 有理数可理解为由性质符号和绝对值组成

⑥ 互为相反数的两个数可理解为符号相反、绝对值相同的两个数

2、 学会发现、探索、合作交流,体会数形结合,分类讨论等数学思想方法

六、设计理念:

绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。通过想一想,议一议,做一做,试一试,练一练等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

一键复制全文保存为WORD