《圆柱的体积》教案5篇

作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。你知道什么样的教学设计才能切实有效地帮助到我们吗?的小编精心为您带来了《圆柱的体积》教案5篇,希望能够帮助到大家。

小学六年级数学教案《圆柱的体积》 篇1

教学目标:

1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。

2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。

3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。

教学重点:

理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。

教学准点:

掌握圆柱体积公式的推导过程。

教学准备:

圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。

教学过程:

一、情境激趣导入新课

1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的`体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)

二、自主探究,学习新知

(一)设疑

1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?

3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)

师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式

(二)猜想

1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?

2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?

(三)验证

1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)

2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)

3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。

4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。

5、通过上面的观察小组讨论:

(1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

(2)长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?

(3)长方体的高与原来圆柱体的哪部分有关系?有什么关系?

(4)你认为圆柱的体积可以怎样计算?

(生汇报交流,师根据学生讲述适时板书。)

小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是V=Sh。

6、同桌相互说说圆柱体积的推导过程。

7、完成“做一做”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)

8、求圆柱体积要具备什么条件?

9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)

小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。

10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)

11、练一练:列式计算求下列各圆柱体的体积。

(1)底面半径2cm,高5cm。

(2)底面直径6dm,高1m。

(3)底面周长6.28m,高4m。

三、练习巩固拓展提升

1、判断正误:

(1)等底等高的圆柱体和长方体体积相等。……()

(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....()

(3)圆柱的底面积越大,它的体积就越大。……()

(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。……()

2、这是我们学校种榕树的一个花坛,测得花坛内直径是4m,花坛内填土高度是0.5m,算一算这个花坛内一共填土多少立方米?

3、学习很愉快,我们来庆祝一下:在一个棱长为20厘米正方体纸盒中,放一个最大的圆柱体蛋糕,系上180厘米长的丝带(打结部分忽略不计),那么这个蛋糕的体积到底是多少呢?

四、全课总结自我评价

通过这节课的学习你有什么感受和收获?

教学反思

圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

从本节课教学目标的达成来看,较好地体现了以下几方面:

一、创设生活情境,体现数学生活化。

《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。

二、引导学生经历知识探究的全过程。

动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。

三、注重学法指导和数学思想方法的渗透。

“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。

《圆柱的体积》的教学设计 篇2

教学内容:圆柱体积公式的推导

教学目的:

1、 通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程。

2、能够运用公式正确地计算圆柱的体积。

教具准备:圆柱的体积公式演示课件

教学过程:

一、复习回顾

1、圆柱的侧面积怎么求?

(圆柱的侧面积=底面周长×高。)

2、长方体的体积怎样计算?

学生回答,教师引导学生想到长方体和正方体体积的统一公式“底面积×高”。

板书:长方体的体积=底面积×高

3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?

二、回忆导入

师:请大家想一想,我们在学习圆的面积时,是怎样把因变成已学过的图形再计算面积的?

让学生回忆,说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的。面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

师:今天将要学习的圆柱的体积大家能不能把圆柱转化成我们已经学过的图形来求出它的体积?

学生相互讨论,思考应怎样进行转化。说出自己想到的方法。

师:这节课我们就让我们一起来研究圆柱的体积。

板书课题:圆校的体积

三、新课讲授

师:看到这个标题你想知道的什么?

学生回答后老师出示教学目标及重难点

1、圆柱体积计算公式的推导。

师出示一个圆柱,让学生观察底面提问:“大家看,这是不是一圆?”(是。)

“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”

学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。

然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。展示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?

学生回答后,老师操作演示,“大家看,圆柱的底面被拼成了什么图形?”

生:长方形。

师:大家再看看整个圆柱,它又被拼成了什么形状?

(有点接近长方体:)

师:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?

引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。

师:“长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。

师:请大家观察,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?

通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

板书:圆柱的体积=底面积×高

师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式; V=SH(板书)

2、公式应用

出示例4。

(1)教师指名学生分别回答下面的问题:

①这道题已知什么?求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?

通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。

(2)出示下面几种解答方案,让学生判断哪个是正确的?

①V=SH=50×2.1=105

答:它的体积是105立方厘米。

②2.1米;210厘米

V=SH=50×210=10500

答:它的体积是10500立方厘米。

③50平方厘米=0,5平方米

V=SH=0.5×2,1=1.05

答:它的体积是1.05立方米。

④50平方厘米=0.005平方米

V=SH=0.005×2.1=0.0105立方米

答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的说说错在什么地方。

四、巩固练习:

1、做“做一做”的第1题。

让学生独立做后集体订正。

2、完成练习八的1、2题

这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。

3、能力扩展

五:课堂总结:

通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。

六:布置作业:

练习十一的第1—2题。

这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。

《圆柱的体积》的教学设计 篇3

【教学过程】

一、揭示课题,确定目标

谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)

启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)

引导:

(1)什么是圆柱的体积?

(2)圆柱的体积和什么有关?

(3)圆柱的体积公式是怎样推导出来的?

(4)圆柱的体积是怎样求出来的?

(5)学习圆柱的体积公式有什么用?

谈话:对!刚才这几位同学跟老师想的一样。

启发:圆柱的体积就是圆柱所占空间的大小

谈话:这堂课我们主要解决三个问题:(出示探究问题)

1、圆柱的体积和什么有关?

2、这个公式是怎样推导出来的?

3、学习了圆柱的体积能解决什么实际问题?

【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。

二、温故知新,自学课本

1、提出问题

谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计 算的?

引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。

谈话:长方体的体积=长×宽×高

正方体的体积=棱长×棱长×棱长

统一为:长方体或正方体的体积=底面积×高

谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?

引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。

谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接 用体积单位去量呢?

引导:它的侧面是一个曲面,用体积单位直接量是有困难的。

2、引发猜想

谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)

引导:圆柱体的体积既和底面积有关,又和高有关。

3、自学课本

谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?

启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)

引导:我们用图形转化的方法,求圆柱的体积。

谈话:这个办法很好。那么把圆柱转化成什么图形呢?

引导:长方体。

谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。

(用多媒体演示圆形的转化过程,边出示、边交流)

【设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。

三、合作交流 发展能力

谈话:同学们观察一下,拼成的是什么图形?

引导:近似的长方体。

启发:说得很好,为什么说是近似的长方体,哪里不太像?

引导:长都是许多弧线组成,不是直的。

谈话:这里我们把圆柱分成16等分,还能分吗?

谈话:究竟能分多少份呢?

引导:无数份,可以永远分下去。

谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。

四、师生合作 归纳结论

谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?

汇报:把圆柱体转化为近似的长方体,形状变了,体积没有变。

谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。

汇报:

(1)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。

(2)转化后的近似长方体的高与原来的圆柱体的高相等。

因为:长方体的体积=底面积×高

所以:圆柱的体积 =底面积×高

(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)

长方体的体积=底面积×高

圆柱的体积 =底面积×高

交流:我们也可以用字母表示圆柱的体积计算公式:v = s h (板书)

引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。

现在请同学们把圆柱体积公式的推导过程再完整地说一遍。

谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。

通过分一分、拼一拼我们把圆柱转化成了近似的长方体。

通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。

【设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。

小学六年级数学教案《圆柱的体积》 篇4

教学目标:

1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式进行正确计算。

教学难点:

理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

教学过程:

一、情景导入:

1、教师:(出示)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?

学生:

1、比平日多了两个蛋糕。

2、两个蛋糕一个大一个小。

3、蛋糕都是圆柱形的。

2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?

学生:蛋糕大,意味着圆柱的体积大。

3、教师:那你还知道什么是圆柱的体积吗?

学生:圆柱的体积就是圆柱体占空间的大小。

4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?

学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

教师:板书:圆柱的体积

二、课上探究

1、教师:同学们回忆一下我们还学过那些立体图形?

学生:还学过正方体和长方体。

教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?

学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

2、猜测圆柱的体积与什么有关

师:拿出圆柱体,让学生猜想圆柱体积与什么有关。

生1、圆柱的体积与圆柱的高有关。

生2、圆柱的体积与圆柱的底面积有关。

生3、圆柱的体积与圆柱的底面周长有关。

生4、圆柱的体积与圆柱的底面半径有关。

3、推导圆柱体积公式

①师:同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?

生:把圆转化成近似长方形来求面积的。

②师:我们一起来回忆把圆转化成近似长方形的过程,()

师:你发现了什么?

生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。

③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?

生:把圆柱转化成近似的长方体。

④师用圆柱体演示转换过程,让学生说怎样转换的。

生:把圆柱平均分成16份拼成一个近似的长方体。

⑤师:为了让大家看的更清楚,我们再演示一下这个转化过程。

再次演示把圆柱等分16等份,拼成近似的长方体。

再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?

生:分成的份数越多,拼成的图形越接近长方体。

⑥师:出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?

学生分组讨论,汇报:

生:长方体的高和圆柱的高相等。

生:长方体的底面积和圆柱的底面积相等。

⑦师:你是怎么想的?

生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。

⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。

生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径

师:演示长方体的体积=底面积×高

⑨师:那么圆柱的体积等于什么呢?

生:圆柱的体积=底面积×高

⑩下面我们再一起回忆一下转化的过程,()

让学生独立填答案,汇报:

三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。

小学数学圆柱体积教案 篇5

教学目标:

1、知识技能

结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、过程方法

让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、情感态度价值观

通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式。

教学难点:

圆柱体积计算公式的推导过程

设计理念:

圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:

1、合作探究学习为主要的学习方式。

2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。

3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。

教具准备:

圆柱的体积公式演示课件水槽水体积不同的圆柱体直尺细绳计算器。

教学过程

一、情景引入

1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

2、提问:“能用一句话说说什么是圆柱的体积吗?”

(设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

二、自主探究、

1、比较大小、探究圆柱的体积与哪些要素有关。

(1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

(2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

(3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

(4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)

2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

(4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

(5)、让学生依据假设结论分组测量圆柱C和圆柱D的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

(设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

4、确定方法,探究实验,验证体积公式。

(1)、首先要求学生利用实验工具,自主商讨确定研究方法。

(2)、学生通过讨论交流确定了两种验证方案。

方案一:将圆柱C放入水中,验证圆柱C的体积。

方案二:将学具中已分成若干分扇形块的圆柱D拆拼成新的形体,计算新形体的体积,验证圆柱D的体积。

(3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)

(4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

(5)、学生汇报:实验的结果与猜想的结果基本相同。

(6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

(7)、小结:

要想求出一个圆柱的体积,需要知道什么条件?

(8)、学生自学第8页例4上面的一段话:用字母表示公式。

学生反馈自学情况:

v=sh(设计意图这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)

三、巩固发展

1、课件出示例4,学生独立完成。

指名说说这样列式的依据是什么。

(设计意图:使学生注意解题格式,注意体积的单位为三次方)

2、巩固反馈

填表

底面积(㎡)高(m)圆柱体积(m3)

63

0.58

82

(设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知识)

3、完成第9页的“试一试”和练一练”中的两道题。

(“练一练”只列式,不计算)

集体订正,说一说圆柱体的体积还可以怎样算?

(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

4、一个圆柱形水杯的底面直径是10厘米,高是15厘米,已知水杯中水的体积是整个水杯体积的2/3,计算水杯中水的体积?

(设计意图:这是第三层发展性练习,安排了密切联系生活实际的习题,让学生运用公式解决问题,切实体验到数学就存在于自己的身边。)

5、拓展练习

(1)、一个长方形的纸片长是6分米,宽4分米。用它分别围成两个圆柱体,A是用4分米做底高6分米,B是用6分米做底高是4分米它们的体积大小一样吗?请你计算说明理由。(得数保留两位小数)

(2)、一个底面直径是20厘米的圆柱形容器里,放进一个不规则的铸铁零件后,容器里的水面升高4厘米,求这铸铁零件的体积是多少?

(设计意图:安排了密切联系生活实际的习题,让学生运用公式解决引入环节中的两个问题,使学生认识到数学的价值体验到数学对于了解周围世界和解决实际问题是非常有作用的;能使学生的思维处于积极的状态达到培养学生思维的灵活性和创造性解决问题能力的目的。)

四、全课小结:

谈谈这节课你有哪些收获。

一键复制全文保存为WORD
相关文章