平行四边形面积教案模板(优秀10篇)

作为一名教师,就有可能用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么你有了解过教学设计吗?这次为您整理了平行四边形面积教案模板(优秀10篇),您的肯定与分享是对小编最大的鼓励。

《平行四边形的面积》教学设计 篇1

教学内容:教科书第79~81页

教学目标:

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

教学过程:

一、导入

1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。

2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

板书课题:平行四边形的面积

二、平行四边形面积计算

1.用数方格的方法计算面积。

(1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

(2)同桌合作完成。

(3)汇报结果,可用投影展示学生填好的表格。

(4)观察表格的数据,你发现了什么?

通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

2.推导平行四边形面积计算公式。

(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。

教师用课件或教具演示剪—平移—拼的过程。(如教材第81页的图示)

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。可以出示讨论题:

①拼出的长方形和原来的平行四边形比,面积变了没有?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,

这个长方形的宽与平行四边形的高相等,

因为 长方形的面积=长×宽,

所以 平行四边形的面积=底×高。

3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

三、巩固和应用

1.出示例1。读题并理解题意。

学生试做,交流作法和结果。

2.讨论:下面两个平行四边形的面积相等吗?为什么?

平行四边形面积教学设计教案 篇2

教学内容:平行四边形面积的计算。

教学目标:

知识目标:通过长方形面积计算知识迁移,理解长方形面积的计算公式,并能正确计算平行四边形面积。

能力目标:在比一比,动一动中发展空间观念,在看一看,想一想中初步感知等积转化的思想方法,提高分析问题、解决问题的能力。

情感目标:通过活动,激发学习兴趣,培养互相合作、交流、探索的精神,感受数学与生活的密切联系。

教学重点:平行四边形面积的计算。

教学难点:推导平行四边形面积计算公式的过程。

教具学具的准备:投影机,平行四边形,剪刀,三角板。

教学过程:

一、创设情景,设疑导入。

从小朋友劳动图片,出示长方形,平行四边形清洁区,设疑导入课题。

二、初步探究,数格求积。

分别出示一个平行四边形,长方形,用数方格的方法求出它们的面积。

三、动手操作,获取新知。

1、小组动手剪拼图形。

2、交流剪拼法及发现。

3、建立平行四边形与长方形的联系,推导平行四边形面积的'计算公式。

4、自学课本第64、65页的内容。

5、利用公式解决课前问题。(比较两块清洁区的大小,在学生选择清洁区的同时进行思想教育)

6、课堂质疑:验证用公式算出来的结果和用数方格求出来的结果是否一样。

四、拓展练习,开创思维。

五、开放题。

六、通过这节课的学习,你有什么收获?

板书设计:

平行四边形面积的计算

长方形的面积=长╳宽

平行四边形的面积=底╳高

S=a╳h=a.h=ah

《平行四边形的面积》教学设计 篇3

教学内容:义务教育课程标准实验教科书(人教版)五年级上册79页——83页

教学目标:

1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。

2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力。

3、培养学生的小组合作意识,发展学生的空间观念。

教学重难点:

1、让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。

2、让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。

教具准备:

教学课件、平行四边形教具和学具、剪刀等。

教学过程:

一、情境引入

1、师:第一单元我们学习了小数乘法,谁能简单地说一说1.36×0.72,我们是怎样进行计算的?(同时大屏幕显示小数乘法竖式)

师:(大屏幕显示整数乘法竖式)我们把1.36×0.72看成136×72来计算,也就是把小数乘法这个新知转化成我们以前学过的整数乘法这个旧知,这道题我们就会解答了。

2、师:第二单元我们又学习了小数除法,谁再来说一说7.65÷0.85,我们又是怎样进行计算的?(同时大屏幕显示小数除法竖式)

师:(大屏幕显示整数除法竖式)我们把7.65÷0.85看成765÷85来计算,也就是把小数除法这个新知转化成我们以前学过的整数除法这个旧知,这道题我们也能解答了。

3、师:同学们你们能否用一个词来概括一下我们刚才小数乘法和除法的学习方法

师:(板书:转化)其实“转化法”是我们数学学习一种非常重要的学习方法,许多数学新知都是通过转化变成旧知,最后使问题得到解决。今后我们在学习中如果再遇到一个新知识,无法解决时,我们就可以尝试着用“转化法”去探索。记住了吗?

4、师:王老师班要进行小组评比,班长设计了两种不同的图形的评比表,这两种图形你们认识吗?(出示一个平行四边形、一个长方形)

5、师:现在老师想知道这两种图形的评比表各用了多少塑料板也就是求什么?

师:你会求它们的面积吗?

师:那么这节课我们就来探究平行四边形的面积。(板书:平行四边形的面积)

6、师:刚才同学们说会求长方形的面积,谁来说一说长方形的面积等于什么?(板书;长方形的面积=长×宽)

师:长方形面积的大小和它的长和宽有关系,下面老师请同学们猜想一下平行四边形面积的大小会和谁有关?(板书底、高)

师:同学们猜想平行四边形的面积的大小和它的底和高有关,老师给同学们变两个小魔术,看谁观察的仔细,能发现其中的奥秘。(同时板书平行四边形面积)

老师演示:

魔术1、注意观察平行四边形的面积又有什么变化?为什么变大了?这说明平行四边形的面积的大小肯定和谁有关?(老师在底的下面做标注)

魔术2、注意观察平行四边形的面积有什么变化?为什么变小了?这说明平行四边形的面积的大小肯定又和谁有关?(老师在高的下面做标注)

7、师:我们发现平行四边形面积的大小和它的底和高有关,在长方形的面积中它的长和宽是相乘的关系,老师请同学们再大胆地推想一下在平行四边形的面积中它的底和高会有什么样的关系呢?

8、师:刚才同学们猜想出在平行四边形的面积中它的底和高是相乘的关系,这个乘号就在老师的手上,但是老师还不能把它放在底和高的中间,我把它先放在下边,为什么呢?因为平行四边形的面积等于底乘高这个结论是同学们猜想出来的,它是否正确我们需要验证一下。如果同学们验证出你们的猜想是正确的,老师再把它挪到底和高的中间,你们有没有信心证明你们的猜想是正确的?

二、探究建模

(一)数格子法

1、师:看大屏幕,同学们手中都有一张和大屏幕上一样的格子纸,格子纸上画有一个长方形和一个平行四边形,请同学们数一数长方形的长、宽、面积各是多少填在表格里,然后再数一数平行四边形的底高面积各是多少也填在表格里。注意一个方格代表1平方厘米,不满一格的都按半格计算。填完之后在小组内讨论一下:你发现了什么?

2、师:谁来汇报一下你数的结果?

3、师:你们发现了什么?长方形的面积等于长乘宽,你们能推出平行四边形的面积等于什么?

4、师:通过数格子我们发现平行四边形的面积等于底乘高,看来同学们刚才猜想的结论还真是正确的。你们真了不起!掌声鼓励一下!看来老师得把这个乘号搬搬家了!老师可以把这个乘号前进一大步,但还不能把它放在底和高的中间,为什么呢?因为刚才的平行四边形有点特殊,它们有格子我们可以证明它们的面积等于底乘高。,如果不数格子,或者说不用数格子的办法我们能不能证明任意的一个平行四边形的面积都等于底乘高呢?我们还得用实验验证,离胜利只差一步之遥了,你们有没有信心?谁来说一说你还想怎样验证?(老师给你们点提示。)

(二)转化法

1、师:课前我们通过复习小数乘法和除法,发现“转化法“是一种非常好的学习方法。你们可以尝试着用“转化法”验证一下刚才的结论是不是正确?

2、师:如果让你转化,你会把平行四边形转化成什么图形?为什么?

3、师:接下来我们就做实验:你们手中都有两张一模一样的平行四边形纸板,请你尝试着把其中一张转化成长方形,然后观察转化后的长方形和原来平行四边形,看看你又发现了什么?

4、师:谁来说一说你是怎样转化的?(把转化的过程贴在黑板上)

5、师:谁来汇报一下,你发现了什么?

6、师:任意的一个平行四边形你们都发现它的面积等于底乘高,看来你们猜想的结论是正确。恭喜你们!掌声鼓励!这回老师可以把乘号放在底和高的中间了。

(三)整理结论

1、师:我们一起读一下我们发现的结论。

2、师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。

3、师:你学到了些什么?

4、师:如果用表示s平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:s=ah

(四)质疑问难

1、师:这节课同学们通过猜想发现平行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?

三、解释应用

1、师:同学们想一想要想求平行四边形的面积必须知道什么?

2、口答题

3、判断题

4、计算题

5、思考题

四、课堂总结

通过这节课的学习你有哪些新的收获?

五年级上册平行四边形的面积教学设计范文(通用5 篇4

教学目标:

1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

2.通过电子白板的操作、探究、对边、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

3.运用猜测、验证的方法,使学生积极的情感体验。发展学时自主探索、合作交流的能力,感受数学知识的价值。

教学重点:

探索并掌握平行四边形的面积计算方法。

教学难点:

理解平行四边形面积计算公式的推导过程。

教学工具:

电子白板课件、平行四边形模型、剪刀、初步探究学习卡

教学过程:

一、课前引入、渗透转化。

1.课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?

2.播放制作七巧板的视频。

3.出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。

二、创设情境,揭示课题。

1.电子白板导出两个花坛,比一比,哪个大?

2.揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。

三、对手操作,探究方法。

1.利用数方格,初步探究

2.出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的铺垫。导出“初步探究学习卡”

四、白板演示,验证猜想。

1.探索把一个平行四边形转化成已学习过的图形。

2.观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。

3.平行四边形的面积=底×高

4.引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。

五、巩固练习,加深理解。

1.课件出示例1

2.课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件

六、课堂小结,反思回顾。

回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?

五年级数学《平行四边形的面积》教学设计 篇5

教学目标:

1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。

2、能应用平行四边形的面积计算公式解决实际问题。

3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。

教学重点:

平行四边形的面积计算公式的推导与应用

教学难点:

理解和掌握用割补法推推导平行四边形的面积计算公式

教具准备:

平行四边形纸、长方形纸、多媒体

学具准备:

平行四边形纸、剪刀、尺子

教学过程:

一、创设情景,引出课题

1、创设情景

同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)

2、引出课题

提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。

二、新课

1、自学,用数方格的方法计算平行四边形的面积。

(1)多媒体出示P80图和表格

(2)读一读数方格时要注意的地方

(一个方格代表1平方米,不满一格都按半格计算)

(3)让学生在电脑上填写表格

(4)提问:观察表格的数据,你发现了什么?

(5)学生汇报。

(6)小结:通过数方格我们发现这两个花坛的面积是同样大的。

2、推导平行四边形的面积计算公式

(1)猜想

如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。

(2)验证

a、动手操作

剪——平移——拼,把一个平行四边形变成一个长方形。

b、讨论:

1、剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?

2、剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?

3、平行四边形的面积=?

(3)汇报并点拨(在投影上展示)

a、把平行四边形分成一个三角形和一个梯形

b、把平行四边形分成两个梯形

(4)小结:平行四边形的面积=底×高(并板书)

(5)提问:用字母怎样表示这个公式?S、a、h各表示什么?

(6)齐读公式,加深印象。

3、教学例题

(1)出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

(2)读题,分析已知条件和问题。

(3)独立完成。

(4)在黑板上展示并评析。

三、巩固练习

1、填空

(1)我们可以把一个平行四边形通过分割和平移转化一个(),这个()的()和平行四边形的底相等,()的()和平行四边形的高相等。所以平行四边形的面积=()×(),用字母表示S=()×()

(2)要求平行四边形的面积,必须知道()和()

2、一个平行四边形的停车位的底长5m,高2、5m,它的面积是多少?(由学生在多媒体课件上输入答案)

3、选择题

求这个平行四边形的面积()

(a)6×8(cm2)

(b)6×4、8(cm2)

4、提高练习

(1)如图所示这个平行四边形的高是多少?

(2)这两个平行四边形的面积相等吗?(P83第5题)

5、拓展练习

清溪镇碧月湾地产将以165万元人民币价格出售如图所示的一块地。现市场价是0、4万元。

(1)这块地值得买吗?

(2)如果“我”要购买,你有什么建议?

四、质疑

五、这节课你有什么收获?

板书设计:平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

S=ah

S=ah

=6×4

=24(cm2)

答:(略)

五年级《平行四边形面积》教学设计 篇6

教学目标:

1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

2、探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

3、在探索平行四边形面积公式的过程中,感受转化的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。

教学重难点:

总结出平行四边形的面积公式。灵活运用平行四边形面积公式。

教具准备:

教师准备长方形一个、平行四边形两个;学生准备三个平行四边形。

教学过程:

一、复习导入

师:同学们,我带来了长方形和平行四边形,说一说你都知道长方形的哪些知识。

(学生说出长方形面积板书出来)

师:你还知道哪些平行四边形的知识?

(如有学生说不出高,师提醒)

师:长方形和平行四边形有哪些相同点,又有哪些不同点?

(平行四边形没有直角)

师:刚有同学说到了面积,那你知道这两个图形哪个面积大吗?

(学生说,比较)

师:那有同学说将这个平行四边形剪拼以后,它们两个的面积就相等了,这个想法非常棒。那我这还有一个平行四边形,这两个比较呢?

(学生说自己的想法)

师:那既然我们不能这样比较出它们的面积,那你们想不想知道还有没有其他的方法可以知道平行四边形的面积?

师:那我们这节课就一起来探索平行四边形的面积。(板书课题)

二、讲授新知

师:我们知道长方形有面积公式,能很快的算出它的面积,那平行四边形有没有呢?

师:有,那我们又如何来探究呢?我们学过长方形的面积,可不可以像刚才那位同学说的,将平行四边形转化成长方形我们再来探究呢?

师:那接下来我们就一起来探究平行四边形的面积公式,先将平行四边形转化成长方形。先不要动,请带着老师的几个要求去做。(课件)

师:(关注学生的剪法。让学生说说自己是怎样剪的,沿着什么剪的?如有很多同学剪的不标准,叮嘱沿着高剪以后,再让同学们剪一剪。多叫些学生来说想法。)

师:通过同学们的探究你发现了什么,找到平行四边形的面积公式了吗?

(生:说想法)

(课件在演示一下平行四边形的底和高相当于转化后长方形的长和宽)

师:那我有个问题,是不是平行四边形的面积就等于长方形的面积?

(不是,并不是所有的平行四边形面积都等于长方形的面积)

师:如果用S表示面积,那平行四边形的面积公式的字母表达是?

(板书:S=ah)

师:同学们今天很了不起,通过自己探索得到了平行四边形的面积公式,那就下来带着这个知识我们来完成几道题好吗?

三、巩固练习

师:1、计算下面平行四边形的面积,快速列算式不计算。

师:2、同学们答得很快,都正确。那接下来将这两题写在本上。

(集体订正答案)

师:如果要想求平行四边形的面积的必备条件是什么?

师:哦,也就是知道高和底就能求出它的面积,是吗?

师:3、让我们一起来看看这道题。

(让学生说说想法)

师:也就是我们要找到相对应的底和高才能求出平行四边形的面积,那这条底边的高在哪?(课件出示)那能求出这条高的长度吗?

(板书:S=ahh=S/aa=S/h)

四、知识拓展

师:同学们现在请比较一下这两个平行四边形的面积。

(学生说想法)

师:那这个呢?对它们的都是相等的,因为它们等底等高。

五、小结

师:本节课你学会了哪些知识?

《平行四边形的面积》教学设计 篇7

教学目标:

1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:平行四边形面积公式的推导方法――转化与等积变形。

教学方法:

利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

教具、学具准备:多媒体课件、平行四边形纸片、长方纸卡,剪刀等。

教学过程:

一、情境激趣

二、自主探究

古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?

在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?

1、数方格,比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?

(学生:麻烦,有局限性。)

(5)观察表格,你发现了什么?

出示表格

平行四边形

底边上的高

面积

长方形

面积

(6)引导学生交流自己的发现。

反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

(7)提出猜想:猜想:平行四边形的面积=底×高是否适合所有的平行四边形面积呢?

2、动手操作,验证猜想。

(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。

(2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)

(3)观察并思考:

①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

(5)交流反馈,引导学生得出结论

①形状变了,面积没变。

②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

(6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

观察面积公式,要求平行四边形的面积必须知道哪两个条件?

(平行四边形的底和高)

(7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?

(转化图形的形状)

(8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

3、运用公式,解决问题。

(1)出示例1

例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?

(2)学生独立完成并反馈答案。

三、看书释疑p79~81

四、巩固运用

1、判断,平行四边形面积的概念。

(1)、两个平行四边形的高相等,它们的面积就相等(      )

(2)、平行四边形的高不变,底越长,它的面积就越大(         ) 。

(3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。(    )

2、计算,平行四边形的面积。

3、拓展1,你有几种方法求下面图形的面积?

4.拓展2   比较,等底等高的平行四边形的面积。

五、课堂总结

通过这节课的学习,你有哪些收获?(学生自由回答。)

《平行四边形的面积》教学设计 篇8

一、 案例背景:

执教班级是五(3)班和五(5)班,这两个班的学生思维都比较活跃,知识面较广。

教学内容是北师大版六年制小学数学第九册第25-26页探索活动(一)《平行四边形的面积》。课前,学生只学了长方形、正方形面积计算,而平行四边形在他们的头脑中还是个直观模型,有关平行四边形特征等知识一无所知。鉴于上述种种情况,对教学进行必要的知识铺垫,以利于这次探索活动有效地开展。从事数学教学工作以来,我崇尚在课堂教学中,尽量为学生创设“合作交流,自主探索”的空间。

二、教材简析:

平行四边形面积的计算,是在学生掌握了长方形和正方形的面积计算,对平行四边形有了初步的认识,清楚了其特征及底和高的概念的基础上进行教学的。若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外,掌握平行四边形面积公式的推导方法,对后面学习其他图形的面积计算会起到积极的迁移作用。

三、教学诠释与研究。

“ 平行四边形的面积”我教学不止一次。以前教的是人教版教材,我把教学的重点放在:借助剪、拼的方法。利用形变积不变的道理,把平行四边形转化为长方形,从而推导出平行四边形的计算公式。教学时,我让学生动手剪、拼,把平行四边形拼成了长方形之后,我就开始下面的启发式提问:①平行四边形的底与长方形的长有什么关系?②平行四边形的高与长方形的宽有什么关系?③转化前后两图形之间什么没有变?启发学生讨论,回答。这样组织教学,学生一般都能得出正确结论,课堂教学进程是一帆风顺的,“效果”是好的。

现在再来审视一下以前的这一节课堂教学,我发现在这种看似良好的效果背后,却潜伏着大的危机:在这样的课堂中,问题由老师提出,思维的路线由老师操纵,学生究竟有多少自主学习的成分?这样的课堂教学貌似“启发式”,实则是由教学操纵的“包办婚姻”,学生是没有“自主权”的。若长此以往,学生只能成为解决问题的高手,而不是发发现问题、提出问题的高手。我们知道,创造源自问题,这样的教育培养出的学生还有创造性吗?

如今,我又开始教学这一内容。不同的现在使用的是北师大版的新教材。这一内容出现在五年级数学上册,标题是“探索活动(一)平行四边形的面积”。教材首先展示了这样一个情境:公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?教材这样安排的目的是让学生面对一个新的问题,思考如何去解决,从而使学生感到学习新知识的必要性;随后,教材提供了两种解决问题的方法:一种是通过数格子的方法,数出这个平行四边形的面积,一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积,最后,教材安排了观察平行四边形与长方形的关系,从中推导出计算平行四边形面积的公式。教材的编排意图是重在让学生自主探索,在探索活动中,使学生发现并理解平行四边形面积的计算方法。课堂教学时如何体现文本的这一“真谛”呢?新课程提倡教师要依据教材教,而不是教教材。在这一理念指导下,我对教材进行了重组。我根据班上学生的学习习惯和认识基础来创设问题情境。下面是课堂教学中的开始片断:

小黑板出示:

师:每个小方块的面积是1平方厘米,你能知道上面每个图形的面积是多少吗?

生:图1的面积是12平方厘米。

师:你们是怎么想的?

生1:我是一块块数的。

生2:我发现长方形长是4㎝,宽是3㎝,所以面积是4×3=12(平方厘米)。

师:谁能很快知道图2这个图形的面积吗?

生1:它的面积还是12平方厘米,因为还是由12个小正方形组成的。

生2:把中间的一排往左推一格,所以还是12平方厘米。

生3:把多的一块剪下来拼过去,正好是一个长方形,面积还是12平方厘米。

师:同学们真会动脑筋!我们可用割下来补过去的方法,将图形转变为长方形,很快知道它的面积。谁能很快说出图3的面积?

生1:在图形中间划出一个正方形,面积是9平方厘米,再把两边的三角形拼在一起,面积是3平方厘米,一共是12平方厘米。

生2:把左边的两个小三角形剪下来补在右边也正好是个长方形,面积是12平方厘米。

师:对于这个图形,我们用割补的方法能很快知道它的面积。

接下来,小黑板出示:

比较一下,图中的平行四边形的面积与长方形面积大小如何?

生1:我用数方格的方法:长方形有5×3=15个小方格,而平行四边形有11整格,加上8个半格拼成的4个整格,也是15个方格,平行四边形面积和长方形面积同样大。

生2:我把平行四边形左边的割下一个三角形,补到右边,就得到一个长方形,得到的长方形面积是15个方格,所以,平行四边形的面积也是15个方格,两个图形的面积大小相同。

师:把平行四边形割补成长方形,图形的什么变了,什么没有变?

生:图形的形状变了,面积大小没有变。

师:说得好!我们把割下的一块没有扔掉,而补在这里,正好得到一个长方形,图形的形状变了,但面积没有变。所以,原来的平行四边形的面积是15个小方格。两个图形的面积一样大。

反思:现代建构主义认为,知识并不能简单地由教师或其他人传授给学生而只能由每个学生依据自身已有的知识和经验主动地加以建构。所谓对新的学习材料的“理解 ”,就是学习者依据自身的已有知识和经验(认知绘声绘色)去解释新材料,使新材料与主体的已有知识、经验之间建立起实质性的、非任意的联系。在上述片断中,我设计了三个图形让学生直接说出它们的面积,并对学生用割补的方法给予肯定,为的是学生去探究平行四边形的面积计算方法时能产生学习的正迁移。接着,又设计了面积相等的两个图形,一个是长方形,一个是平行四边形,特别是两个图是在画有小方格的背景上画出的,我还暗示性的画出了平行四边形的高,让学生比较两个图形面积的大小,学生很快就能用数小方格的方法和“割补”法,为下面的推导出平行四边形的面积公式奠定了关键性的一步课后反思时,我觉得这节课在引导学生推导平行四边形面积公式时铺垫、暗示还是多了点,如果抽掉那些铺垫,直接让学生把一个平行四边形剪拼成长方形,这时课堂上又会是怎样的情景呢?我期待着下一次的教学实践。

几经思考,第二天在另一个班上这一内容时,我决定我觉得该给学生更多的自主探索的空间。请看下面的教学片断:

师:刚才同学们用“割补”法将平行四边形转化成长方形,比出了两个图形面积的大小,是不是所有的平行四边形都能用割补的方法转化成长方形呢?请同学们拿出各自的平行四边形纸片,动手剪剪拼拼,看看行不行?

学生进行操作实践,加验证。

师:你们手中的平行四边形能不能转化成长方形?谁愿意上讲台前演示给大家看?

学生争着前来演示,沿着平行四边形地高剪开,拼成长方形。

学生演示时,师追问学生:是沿着哪一条线剪的?

生:沿着平行四边形地高剪开的。

师:为什么要沿着高剪?

生:因为长方形的四个角都是直角,不沿着高剪,就拼不成一个长方形。

师:由此看来,对于任何一个平行四边形都可以转化成一个长方形,长方形的面积你们已经会计算了,现在,你们能算出你们手中的平行四边形的面积吗?

有的学生在量着,有的则愣着,有的忍不住抱怨着:它没有告诉什么呀,怎么算?我悄悄地走过去,小声地问:你希望告诉你什么,你就能算了,你有办法自己去知道需要的条件吗?得到启发,该生也拿尺量了起来。

全班交流自己的结果。

生:我量得我手中的平行四边形的底是6㎝,高是4㎝,所以面积是6×4=24(平方厘米)。

师:你能不能告诉大家,计算平行四边形的面积为什么用平行四边形的底乘高?

生:因为用割补的方法把平行四边形转化成长方形,面积不变。我发现长方形的长相当于平行四边形地底,宽相当于平行四边形的高,所以平行四边形的面积是底乘高。

结合学生的回答,板书:

长 方 形 面 积 = 长×宽

平行四边形面积 = 底×高

师:用字母s表示平行四边形的面积,a表示它的底,h表示它的高,计算平行四边形面积的字母公式是怎样的?

生1:s=a×h

生2:还可以用小圆点代替乘号。

生3:还可以省略小圆点,写作:s=ah

……

师:这节课,你们学到了什么?

生:学会了计算平行四边形的面积。

师:是怎么学会的呢?

部分学生沉默,估计是学生不善于表达。

师:面对着求平行四边形面积的新问题,我们用割补的方法转化成学过的长方形,用旧知识解决了新问题。以后,我们还可以用这种思想方法去获取三角形,梯形面积计算等新知识。你们说这种思想方法重要吗?

反思:对于如何概括出求平行四边形面积的公式?我没有像以前那样由教师提出一个个小问题,然后学生回答,从而得出公式,而是直接先让学生计算手中的平行四边形的面积。如何计算平行四边形的面积呢?这一问题对学生来说具有极大的挑战性。学生居然算出来了,这说明学生的潜力是巨大的。课堂上一定要让学生积极地独立思考,自主探究。如果教师牵着学生走,铺垫太多,会妨碍学生独立思考,不利于学生的发展。平行四边形的面积学生既然求出来了,归纳求平行四边形面积的公式也就水到渠成了。

五年级上册平行四边形的面积教学设计范文(通用5 篇9

教学目标:

1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积

2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

3、对学生进行辩诈唯物主义观点的启蒙教育.

教学重点:

理解公式并正确计算平行四边形的面积.

教学难点:

理解平行四边形面积公式的推导过程.

学具准备:

每个学生准备一个平行四边形。

教学过程:

一、导入新课。

1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?

2、好,下面谁来说一说你找到了哪些学过的图形?

3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

二、民主导学

(一)、数方格法

用展示台出示方格图

1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?

小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

(二)引入割补法

以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

(三)割补法

1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

2、然后指名到前边演示。

3、教师示范平行四边形转化成长方形的过程。

刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

①先沿着平行四边形的高剪下左边的直角三角形。

②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

4、观察(黑板上在剪拼成的'长方形左面放一个原来的平行四边形,便于比较。)

①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

②这个长方形的长与平行四边形的底有什么样的关系?

③这个长方形的宽与平行四边形的高有什么样的关系?

教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

5、引导学生总结平行四边形面积计算公式。

这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)

那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)

6、教学用字母表示平行四边形的面积公式。

板书:S=a×h

说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。

(6)完成第81页中间的“填空”。

7、验证公式

学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。

条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

三、检测导结

1、学生自学例1后,教师根据学生提出的问题讲解。

2、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等()

(2)平行四边形底越长,它的面积就越大()

3、做书上82页2题。

4、小结

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

5、作业

练习十五第1题。

附:板书设计

平行四边形面积的计算

长方形的面积=长×宽

平行四边形的面积=底×高

S=a×h

S=a·h或S=ah

《平行四边形的面积》教学设计 篇10

小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

本课关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。

心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。

我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。

对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:

第一层:基本练习:书本P82第1题

有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。

第二层:综合练习:

1、你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么?

让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。

2、你会求出这个平行四边形的面积吗?

通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

第三层:扩展练习:

1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中)

学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。

整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:

数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、平移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。

前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。

通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。

一键复制全文保存为WORD
相关文章