圆的周长教案【优秀10篇】

作为一名专为他人授业解惑的人民教师,常常需要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写呢?下面是小编精心为大家整理的圆的周长教案【优秀10篇】,您的肯定与分享是对小编最大的鼓励。

《圆的周长》优秀教学设计 篇1

教学内容:

圆的周长

教学重点:

理解圆周率的意义。

教学难点:

探究圆的周长的计算方法。

教学过程:

一、导入新课

故事导入,观看后提问:

1.谁获胜呢?

2.它们对自己跑的距离产生了怀疑,都说自己跑的远……

3.拿起一个圆用手模一摸感知什么是圆的周长。

二、新课

(一)介绍测量方法:

1.绳测法。

2.滚动法。

3.教师引导学生运用“化曲为直”的思想,知道绳测法和滚动法测量圆的周长,并让学生感知这两种方法的局限性

(二)猜想。(三)实验。

1.小组协作。

周长c (厘米)

直径d (厘米)

周长与直径的比值 (保留两位小数)

2.汇报测量和计算结果。

提问:通过这些实验和统计,你发现圆的周长和直径有没有关系?有怎样的关系?

学生:发现每个圆的周长总是直径的3倍多一些。

(四)验证结论。

(五)阅读理解有关圆周率的知识。

三、练习

计算方法:

1.能说出圆周长的计算方法吗?

c=∏d c=2∏r(板书)

2.根据条件,求下面各圆的周长。

d=10cm r=10cm

3.(略)

4.现在你明白小龟和小兔谁跑的路程长吗?谁跑得快?

5.拓展练习。

四、总结。

你学会了什么?请主动用你学会的知识去解决生活中有关圆的周长的问题。

圆的周长教案 篇2

一、教学目标

【知识与技能】

掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

【过程与方法】

通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

【情感态度与价值观】

积极参与数学活动,培养学习数学的兴趣。

二、教学重难点

【重点】圆的周长的计算公式。

【难点】圆的周长公式的推导过程。

三、教学过程

(一)导入新课

创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。

学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。

教师明确,圆一圈的长度即为圆的周长。

引入课题——圆的周长。

(二)探索新知

1、探索发现

学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。

学生汇报测量结果及测量方法。

教师引导学生思考,圆的周长大小与什么有关。

学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。

教师明确直径是半径的2倍,可看其中一项即可。

2、探索圆的周长与圆的直径关系

小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。

小组汇报分享测量结果,教师板书。

学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。

学生汇报通过多次测量计算比值总在3.1左右。

教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。

给出圆周率的特点:

(1)是一个无限不循环的小数;

(2)我国伟大的数学家祖冲之将其精确到小数点后七位;

(3)现在为了方便只要取小数点后两位即可。

(三)应用新知

问题:大头儿子家圆桌直径为1米,求需要买多长的'铁丝?3.1米够吗?

教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。

(四)小结作业

提问:通过本节课,你有什么收获?

课后作业:回家找一个圆形,借助直尺测量,计算出周长。

四、板书设计

圆的周长教案 篇3

教学目标:

1、生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。

2、生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

3、学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。

教学重点:

探索已知圆的周长,求这个圆的直径或半径的方法。

教学难点:

能熟练运用圆的周长公式解决实际问题。

课前准备:

多媒体课件

教学设计:

一、教学例6。

⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)

⑵ 课件出示测量的结果:花坛的周长是251.2米。

小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

① 在小组中说说自己的想法。

② 展示自己是怎么解答的。

⑶ 全班展示、交流。

① 根据圆周长公式C=πd列方程解答。

解:设这个花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

② 直接用除法计算。

251.2÷3.14=80(米)

⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间

的关系计算。

2、习“试一试”。

二、巩固拓展

1、成“练一练”。

提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

2、成练习十四第5题。

3、成练习十四第6题

4、成练习十四第7题。

5、生完成练习十四第8题。

6、成练习十四第9、10题。

三、总结延伸

本节课,你有哪些收获?还有什么疑问?

板书设计:

圆的周长教案 篇4

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点、难点

教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

教学过程设计

一、创设情境,引发探究

⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、人人参与,探究新知

(一)教具演示,直观感知,认识圆周长。

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

(二)理解圆周率的意义

活动一:测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用"几何画板"《小球的轨迹》演示形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

活动二:探究圆周长与直径的关系,认识圆周率。

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵利用不同长度的小球形成的三个圆,让学生观察思考考:。哪一个圆的周长长?圆的周长与它的什么有关呢?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示"几何画板"《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

(三)推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?

学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

三、应用新知,解决问题

1、和自己的伙伴一起解答例1和做一做

2、说出这两题用哪个公式比较好?

四、实践应用,拓展创新。

⒈基础性练习:

(1)求下列各圆的周长(几何画板)

r=3厘米 d=4厘米

(2)、我们现在有办法求唐老鸭跑的路程吗?

⒉、判断

①圆的周长是直径的π倍。

②大圆的圆周率小于小圆圆周率。

3、提高练习

在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

五、总结评价,体验成功

1、你学到了什么?

2、你是怎么学到的?

圆的周长教案 篇5

教学目标:

1.经历圆周率的探索过程,理解并掌握圆周率的意义和近似值,初步理解并掌握圆的周长计算公式,能正确计算圆的周长。

2.培养学生的观察、比较、分析和动手操作的能力,发展学生的空间观念,培养学生抽象概括的能力和解决简单的实际问题的能力。

3.通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

教学重点:

理解并掌握圆的周长的计算公式。

教学难点:

理解圆的周长与直径之间的关系。

教学准备:

圆规、剪刀、绳子、尺子。

教学过程:

一、复习旧知,引入新知

1.教师在黑板上画圆。

(1)提问:你对圆有哪些了解?

(2)指名回答,同学之间相互补充。

(3)你还想了解什么?

2.通过学生的回答,引出:这节课我们就起来研究圆的周长。(板书:圆的周长)

二、合作交流,探究新知

1.认识周长的含义。

(1)师:你能指出黑板上这个圆的周长吗?

(2)从实物中指出圆的周长。

(3)用语言表述圆的周长。

学生回答,教师总结:圆的周长就是指围成圆的曲线的长度。

2.教学例4。

(1)出示例4,了解轮胎规格。明确:这里的22英寸、24英寸、26英寸是指

轮胎的直径。

(2)启发思考:如果把它们各滚动一圈,哪种车轮行驶的路程比较长?

(3)比较这三个车轮的直径和周长,你又有什么发现?

(4)小结:直径越大,圆就越大,圆的周长也就越长。圆的周长和直径到底有什么关系呢?接下来我们继续研究。

3.教学例5。

(1)讨论实验方案。要研究直径和周长间有什么关系,我们可以怎样做?

(2)学生回答后,小结:我们可以画几个圆,量一量它们的直径和周长,算一算周长除以直径的商。

(3)明确要求

①画三个大小不同的圆。

②用尺子量出直径。

③用线围出圆的周长并用尺子挞出长度。

④边操作边填好表格。

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

(4)学生分组按要求操作,要求分工明确。

(5)整理学生的测量结果,汇总。

(6)观察表格,说说有什么发现。

学生回答后,小结:一个圆的周长总是直径的3倍多一些。

4.认识圆周率。

(1)介绍圆周率,并板书: 3.14

(2)阅读教材第102页的你知道吗内容。

5.推导得出圆的周长计算公式及其字母公式。

板书: 或

三、巩固练习,加深理解

1.完成试一试。

(l)根据刚刚学过的圆的周长的计算方法,学生独立计算车轮的周长。

(2)指名说说计算方法。

2.完成练一练。

(l)学生独立完成计算。

(2)汇报交流。

3.完成练习十四第1题。

(1)学生看图,说说题目中的已知条件。

(2)学生独立完成计算。

(3)交流计算方法。

4.作业:练习十四第2、3、4题。

四、课堂小结

师:这节课我们研究了圆的周长,谁能说说是用什么方法进行研究的?你有

哪些收获?

板书设计:

圆的周长

周长/cm 直径/cm 周长除以直径的商

(保留两位小数)

圆的周长教案 篇6

教学内容:

圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。

教学目标:

1、认识圆的周长,理解圆周率的意义。

2、掌握圆周长的计算公式,会用公式正确计算圆的周长。

3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。

教学重难点:

1、圆的周长公式推导及运用公式计算圆周长是重点。

2、通过实验找出圆的周长与直径的关系—圆周率是难点。

3、关键是让学生动手操作测周长与直径。

教学准备:

学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。

老师准备:小黑板

教学过程:

一、复习铺垫(5分钟)

1、小黑板出示

(1)

(2)

10厘米 6分米

2、提出问题:

同学们,老师要用铁丝分别做成上面两个图形的框架,

(1)请同学们帮助老师算一算每个图形需要用多长的铁丝?

(2)、每个图形需要用多长的铁丝,是求什么的?

(3)什么是周长?周长的单位有哪些?

(4)、要求图(1)、图(2)的周长应该知道什么条件?

二、探索新知(25分钟)

(一)认识圆的周长

1、出示:圆的图形 和其他实物圆。

2、提问:

(1)这是一个什么形实物?

(2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?

3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。

4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。

(二)提示课题

在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。

板书课题——圆周长计算

(三)圆的公式推导

1、猜一猜,想一想,动手操作(8分钟)

(1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:

圆的周长与它的什么条件有关?

独立思考后,前后桌四人交换意见。

学生汇报:圆的周长和直径(或半径)有关。

继续提问:它们之间到底有什么的关系呢?

故事激趣

我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。

(2)动手实验:(四人一组,合作完成) (一组测一个)

a、取出圆形纸板,量出圆形纸板的直径。

b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。

d、算出周长和直径的比值。

e、 汇报,老师把表画在小黑板上,并填表。

2、观查数据,发现规律:(5分钟)

观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)

小组汇报:

同一个圆,它的周长是它的直径的3倍多一些。

3、认识圆周率(2分钟)

(1)在学生发现圆周长与它的直径关系的基础上,老师明确:

刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径

(2)让学生读一读( Pài )写一写。

(3)了解π的值。

A、π是一个无限不循环小数,π=3.1415926535.。.。.。.。.。

B、在实际应用中一般只取它的近似值,即π≈3.14.

4、圆周长公式推导:(5分钟)

老师:如果已知圆的直径,如何计算圆的周长。

圆周长= π×直径

如果周长用C表示:字母公式C=πd

知道半径,怎样求周长C=2πr

( 四)应用公式(2分钟)

教学例1:

(1)出示例题:圆形花坛的直径是20米,它的周长是多少米?

(2)学生读题并尝试列式计算。

(3)学生板演:3.14×20=62.8(米)

说明:解题时可以不写计算公式

π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。

三、巩固练习(8分钟)

1、 完成课本64页做一做。

2、完成练习十五第1题。

3、补充作业。判断题:

(1)圆的周长刚好是直径的3.14倍。

(2)大圆的圆周率大,小圆的圆周率就小。

(3)π是两位小数。

(4)圆的周长等于它的半径的2π倍。

(5)求周长,直径是唯一条件。

四、课堂小结(2分钟)

本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比

值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。

五、布置作业:课堂作业

六、板书设计圆周长计算

圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径

因为d=2r 圆周长=π×半径 ×2

π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr

注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。

(2)π在计算的应用中,结果不用“≈”号,而用“=”号。

3.14×20=62.8(米)

答:圆形花坛的周长是68.2米

七、课后记

《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的周长公式应用到练习中。

本节课中,我觉得比较成功的是:

首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。

本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。

在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。

圆的周长教案 篇7

教材分析

(可以从以下几个方面进行阐述,不必面面俱到)

l 课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。

l 本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。

教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。

在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。

在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。

学情分析

(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)

教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。

l 学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的知识。

l 学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。

在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。

教学目标

(教学目标的确定应注意按照新课程的三维目标体系进行分析)

1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。

2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。

3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

教学重点和难点

教学重点:正确计算圆的周长

教学难点:理解圆周率的意义,推倒圆周长的计算公式。

教学流程示意

(按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)

一、创设情境,认识周长

二、小组合作,探究求圆周长的方法

三、运用知识,解决问题

四、课堂总结

五、布置作业

六、教学反思

教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)

关于圆的周长教学设计教案 篇8

教学目标:

1.生经历探索已知一个圆的周长 求这个圆的直径或半径的过程,体会解题策略的多样性。

2.生进一步理解周长、直径、半径之间的关系,能熟练运用圆的周长公式解决一些实际问题。

3.学生感受平面图形的学习价值,进一步提高学习数学的兴趣和学习数学的信心。

教学重点:

探索已知圆的周长,求这个圆的直径或半径的方法。

教学难点:

能熟练运用圆的周长公式解决实际问题。

课前准备:

多媒体课件

教学设计:

一、教学例6。

⑴ 课件出示例6的场景图,全班交流:怎样能准确测算出这个花坛的直径,又不会损伤到花坛里的花草呢?(先测量出花坛的周长,再算出花坛的直径。)

⑵ 课件出示测量的结果:花坛的周长是251.2米。

小组交流:知道了这个花坛的周长,怎样算出这个花坛的直径呢?

① 在小组中说说自己的想法。

② 展示自己是怎么解答的。

⑶ 全班展示、交流。

① 根据圆周长公式C=πd列方程解答。

解:设这个花坛的直径是x米。

3.14x=251.2

x=251.2÷3.14

x=80

② 直接用除法计算。

251.2÷3.14=80(米)

⑷ 总结比较:这两种方法有什么相同和不同的地方?你喜欢什么方法?为什么?

小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间

的关系计算。

2.习“试一试”。

二、巩固拓展

1.成“练一练”。

提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

2.成练习十四第5题。

3.成练习十四第6题

4.成练习十四第7题。

5.生完成练习十四第8题。

6.成练习十四第9、10题。

三、总结延伸

本节课,你有哪些收获?还有什么疑问?

圆的周长教案 篇9

教学内容:

圆的周长(小学数学九年制义务教材第十册).

教学目的:

1.让学生知道什么是圆的周长.

2.理解圆周率的意义.

3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

教学重点:

推导圆的周长计算公式.

教学难点:

理解圆周率的意义.

教具学具:

1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

2.电脑软件及演示教具.

教学过程:

一、复习:

上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

二、导入:

这节课我们继续研究圆的周长(板书课题).

1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

问:什么是圆的周长?

板书:围成圆的曲线的长是圆的周长.

3.你能测量出这个圆的周长吗?(能)

4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

回答:不能.

想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的。周长呢?今天我们就来研究这个问题.

三、互动

请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

四、学生动手测量、教师巡视指导.

五、统计测量结果.

观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

六、电脑演示

(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读通过实验到3.14.

七、看书后回答问题:

1.是谁把圆周率的值精确计算到6位小数?

2.什么叫圆周率?

3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

4.如果用字母c表示圆的周长,d表示直径,r表示半径,表示圆周率,圆的周长的计算公式应该怎样表示?

现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(取3.14)

八、出示例1:

一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

(得数保留两位小数)

请同学们想一想:车轮滚动一周的距离实际指的是什么?

解:d=1.95 单位:米

c=d

=3.141.95

=6.123

6.12(米)

答:车轮滚动一周约前进6.12米.

九、课堂练习:

1.投影:计算下面图形的周长.

2.判断下面各题(正确的出示,错误的出示)

(1)圆周率就是圆的周长除以它的直径所得的商. ( )

(2)圆的直径越大,圆周率越大. ( )

(3)圆的半径是3厘米,周长是9.42厘米. ( )

3.小明和爷爷分别沿小圆(ABCDEA)和大圆两条路线散步

圆的周长教案 篇10

教学内容:

圆的周长的综合练习

教学目标:

通过练习,使学生加深对圆的认识,能正确计算圆的周长,并能根据圆的周长求这个圆的半径或直径。

教学重点:

理解圆的半径、直径、周长之间的关系

教学难点:

能运用知识解决一些实际问题

教学过程:

一、揭示课题

今天这节课,我们把学习圆的有关知识进行整理一下,并通过一些练习来巩固这方面的知识。

板书课题:圆的周长

二、练习指导

基本练习(口答)

⑴在同一个圆内,所有的半径,所有的直径,直径是半径的,半径是直径的。

⑵决定圆的位置,决定圆的大小。

⑶什么是半径?什么是圆的直径?

⑷圆的周长总是它直径的倍,它是一个固定不变的数,用字母表示。

练习指导

1、求下面各圆的周长

d=2米 d=1.5厘米 r=6分米

2、求下面各圆的直径

C=28.26厘米 C=50.24米

3、求下面各圆的半径

C=12.56米 C=314厘米

以上几题均由学生板演,其余齐练

全班讲评,订正

三、解决实际问题

1、一根绳子长6.28米,在一根圆木上,正好绕了5圈,这根圆木的直径是多少?

2、一面钟的分针长14厘米,经过一小时,分钟针尖可划过多少厘米?

3、小明的自行车轮胎的直径是0.6米,小明骑一分钟车轮转动了100圈。

①他一分钟可行驶多少米?

②他要通过2180米长的大桥,大约需要几分钟?

四、课终小结

今天我们练习了什么?你有什么收获?

一键复制全文保存为WORD
相关文章