平行四边形教案(优秀7篇)

认识平行四边形是小学阶段图形与几何部分十分重要的基础知识之一。平行四边形的认识教案有哪些呢?以下是人见人爱的小编分享的平行四边形教案(优秀7篇),在大家参照的同时,也可以分享一下给您最好的朋友。

平行四边形教案 篇1

教学目标

1.能够从图中全面感知平行四边形现象,体会平行四边形在生活情景中的存在。,

2.通过观察、操作等活动,认识平行四边形的一些特征。

3.经历探索平行四边形的过程,了解它的基本特征,进一步发展空间观念。

教学重点

通过观察、操作等活动,认识平行四边形的一些特征

教学难点

经历探索平行四边形的过程,了解它的基本特征

教学过程

激发兴趣

一、(出示主题图)

我们已经认识了平行四边形,请同学们仔细

观察主题图,图中都有些什么物体,这些物体

都反映出一些什么现象?

这些现象正是我们本单元所要研究和学习

的平行四边形。(板书课题)

仔细观察

小组活动

探索、感知

探索新知 1.拉一拉。

师:拿出你们准备的长方形木框,用手捏住相对的两个角,向相反的方向拉动,边拉动,边观察你有什么发现?与原来的长方形有什么相同和不同?

生:可以拉成不一样的平行四边形。……

师:说明平行四边形易变形。(板书:易变形)

2.画一画,比一比 。

(拉到一定的位置不变)师将拉成的'平行四边形画在黑板上。学生将拉成的平行四边形画在纸上。 观察平行四边形,你发现了什么?

生:相对的两条边互相平行……

抽生演示测量两组对边分别平行。

师课件演示两组对边分别平行。

师小结:两组对边分别平行平行的四边形叫做平行四边形。

3.量一量,填一填,说一说。

师:先给平行四边形的边和角编上号。每位同学都用直尺量一量平行四边形的四条边,用三角板量一量四个角,然后填表。

长边 长边 短边 短边 边 ∠1 ∠2 ∠3 ∠4 角

观察表格,你有什么发现?

将自己的发现在小组交流,然后讨论平行四边形都有哪些特点?作好记录。

全班汇报。你们组发现了平行四边形都有哪些特点?

师:几组同学的汇报都有哪些相同的地方?你们有吗?

平行四边形都有哪些特征?

总结:1.两组对边分别相等。2.两组对角分别相等。

3.四个内角的和是360

学生操作

抽生汇报

先独立思考,在小组讨论。

独立观察后,同桌交流。然后全班交流。

学生操作,先拉平行四边形,再画。

独立观察

小组交流

抽生汇报

学生发言,其余注意倾听。

独立思考,汇报。

1组:我们发现左右两边的长都是……,上下两边的长都是……

一组对角都是……,另一组对角都是……

2组:……

课堂小结

今天这节课我们学习了些什么?你都有哪些收获?

平行四边形 篇2

七、教学步骤

【复习提问】

图1

1.什么叫平行四边形?我们已经学习了它的哪些性质?

2.已知:如图1, ,.

求证:.

3.什么叫做两条平行线间的距离?它有什么性质?

【引入新课】

在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的。如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题。

【讲解新课】

图2

(1)平行四边形的性质定理3,平行四边形的对角线互相平分。先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明。

(2)平行四边形性质,定理的综合应用:

同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键。

图3

例2  已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.

求证:.

证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势。如这里可直接由定理3得出 ,而不再重复定理的推导过程证出。

图4

例3  已知,如图4,,,.求的面积。

(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .

(2)讲清楚何为平行四边形的高。在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高。如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线。作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度。

(3)平行四边形面积的表示法,如图5表示为 .

(4)学生自己完成解答。

图5

【总结、扩展】

1.小结

(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化。

(2)引导学生填写下列表格(打出投影)

名称

平行四边形

示意图

定义

对角线

2.思考题:教材P144中   B.4

八、布置作业

教材P141中2(4);P142中3(2)、4、5、6.

九、板书设计

标题 例2

小结(表格)

平行四边形性质3 例3

十、背景知识与课外阅读

国际数学奥林匹克

简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛。1985年7月我国首次派《》代表参加第26届 .中国队获金牌数为各队之首。

十、随堂练习

教材P.134中1、2

补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.

2.在中, , , ,则 .

3.已知 是 的 边上任一点,则 : 的值为____.

A. B. C. D.不确定

平行四边形教案 篇3

教学目标

1、知识目标

(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

2、能力目标

(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标

渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

教学重点、难点

重点:平行四边形的概念及其性质.

难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用

教学方法:讲解、分析、转化

教学过程设计

一、利用分类、特殊化的方法引出平行四边形的概念

1.复习四边形的知识.

(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

(2)将四边形的边角按位置关系分为两类:

教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

2.教师提问:四边形中的两组对边按位置关系分为几种情况?

引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

3.对比引出平行四边形的概念.

(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

练习1(投影)

如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

二、探索平行四边形的性质并证明

1.探索性质.

启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

(3)对角线

⑤对角线互相平分(性质定理3)

教师注意解释并强调对角线互相平分的含义及表示方法.

2.利用化归的方法对性质逐一进行证明.

(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

(3)写出证明过程.

3.关于“两条平行线间的平行线段和距离”的教学.

(1)利用性质定理2

导出推论:夹在两条平行线间的平行线段相等.

①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

练习2

(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

练习3

在图4-15(d)中,

①点A与点C的距离是线段__的长;

②点A到直线l2的距离是线段__的长;

③两条平行线l1与l2的`距离是线段__或__的长;

④由推论可得:两条平行线间的距离__.

三、平行四边形的定义及性质的应用

1.计算.

例1填空.

(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

2.证明.

例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

分析:

(1)尽量利用平行四边形的定义和性质,避免证三角形全等.

(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

分析:

(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

3.供选用例题.

(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

四、师生共同小结

1.平行四边形与四边形的关系.

2.学习了平行四边形哪些方面的性质?

3.两条平行线的距离是怎样定义的?有什么性质?

五、作业

课本第143页第2,3,4,5,6题.

课堂教学设计说明

本教学设计需2课时完成.

这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

平行四边形及其性质

教学目标

1、知识目标

(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

2、能力目标

(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标

渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

教学重点、难点

重点:平行四边形的概念及其性质.

难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用

教学方法:讲解、分析、转化

教学过程设计

一、利用分类、特殊化的方法引出平行四边形的概念

1.复习四边形的知识.

(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

(2)将四边形的边角按位置关系分为两类:

教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

2.教师提问:四边形中的两组对边按位置关系分为几种情况?

引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

3.对比引出平行四边形的概念.

(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

练习1(投影)

如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

二、探索平行四边形的性质并证明

1.探索性质.

启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

(3)对角线

⑤对角线互相平分(性质定理3)

教师注意解释并强调对角线互相平分的含义及表示方法.

2.利用化归的方法对性质逐一进行证明.

(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

(3)写出证明过程.

3.关于“两条平行线间的平行线段和距离”的教学.

(1)利用性质定理2

导出推论:夹在两条平行线间的平行线段相等.

①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

练习2

(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

练习3

在图4-15(d)中,

①点A与点C的距离是线段__的长;

②点A到直线l2的距离是线段__的长;

③两条平行线l1与l2的距离是线段__或__的长;

④由推论可得:两条平行线间的距离__.

三、平行四边形的定义及性质的应用

1.计算.

例1填空.

(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

2.证明.

例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

分析:

(1)尽量利用平行四边形的定义和性质,避免证三角形全等.

(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

分析:

(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

3.供选用例题.

(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

四、师生共同小结

1.平行四边形与四边形的关系.

2.学习了平行四边形哪些方面的性质?

3.两条平行线的距离是怎样定义的?有什么性质?

五、作业

课本第143页第2,3,4,5,6题.

课堂教学设计说明

本教学设计需2课时完成.

这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

平行四边形 篇4

教学目标 

(一)使学生理解的概念及其特性,并会画的高。

(二)使学生掌握长方形、正方形和的关系。

(三)进一步提高学生观察、比较能力和作图能力。

教学重点和难点

理解和掌握的定义及其特性,画的高是教学重点;理解长方形、正方形与之间的关系是难点。

教学过程 设计

(一)复习准备

我们已经学过一些几何图形,观察一下这些图形有什么共同的特点?(投影)

在明确它们都是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形

提问:我们学过哪些四边形呢?

(学过的四边形有长方形、正方形、.)

你能举例说说哪些物体表面是吗?

教师出示挂图,让学生初步感知。

我们已初步认识了,那么什么叫?它有什么特性?这就是我们今天要研究的课题。(板书课题:)

(二)学习新课

1.理解的定义。

首先出示一组图形:

这些图形是什么形?它们有什么特征?

①动手测量。

指名一学生到黑板上用三角板检验一下,每个图形的对边怎样。

其余同学用三角板检验课本151页3个图形的对边。

然后再用尺子度量一下每组对边的长怎样。

②抽象概括。

根据你测量的结果,能说说什么叫吗?

小组先议论一下,(可能说出每组对边分别相等,也可能说出每组对边平行)再让到黑板上测量的同学说出检验与测量的结果,从而引出的确切含义。

两组对边分别平行的四边形叫做。(板书)

教师强调说明:只要四边形的每组对边分别平行就能确定它的两组对边相等,因此的定义是“两组对边分别平行的四边形”。

反馈:判断下面图形哪些是?(投影)

2.的特性。

同学们已经学过三角形,三角形具有稳定的特性,那么有什么特性呢?

(1)教师演示。

教师拿一长方形木框,用两手捏住长方形的两个对角,向相反方向拉。观察两组对边有什么变化?拉成了什么图形?什么没有变?

学生明确:两组对边边长没有变,变成了,四个直角变成了锐角和钝角。

(2)动手操作。

学生自己动手,把准备好的长方形框拉成,并测量一下两组对边是否还平行。

(3)归纳特性。

根据刚才的实验、测量,引导学生概括出:有不稳定性。(板书)

(4)对比。

三角形具有稳定性,不容易变形。与三角形不同,容易变形,也就是具有不稳定性。

这种不稳定性在实践中有广泛的应用。你能举出实际例子来吗?(如汽车间的保护网,推拉门、放缩尺等。)

3.学习的底和高。

(1)认识的底和高。

出示:

教师边演示边说明:

从一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做的高。这条对边叫做的底。

(2)找出相应的底和高。

出示:(投影)

观察上图中,有几条高?它们相对应的底各是哪条线段?

从而让学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.

(3)画的高。

同学们已经学过三角形画高的方法,高的画法与其相同,都用过线外一点画已知直线的垂线的方法。从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高。这里高要画在内,不要求把高画在底边的延长线上。

同学动手画高:152页“做一做”。

4.教学长方形、正方形和的关系。

教师利用长方形框,拉动长方形的边,使其变成不同的。还可把变成长方形,比较一下长方形和的异同点。

引导学生明确:相同点是两组对边都分别平行,所以长方形也具有的特征,也属于。不同点是长方形的四个角都是直角,所以把长方形看作是特殊的。

比较正方形和的相同点和不同点。

引导学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的。因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形还可看作是特殊的长方形。

这三种图形之间的关系可以用集合图来表示。

(三)巩固反馈

1.说说什么叫做?它有什么特性?

2.在下面图形中画高,并指出它的底。

3.在下面图形中,画出两条不同的高。

4.说一说、长方形和正方形之间的关系。

(四)作业 (略)

课堂教学设计说明

本节课是在学生对有了初步感知的基础上,通过直观演示,操作实践等手段,给学生建立明确的概念。

新课分为四个部分。

首先让同学利用前面讲过的检验平行线的方法,检查三个不同形状的,然后再用尺子度量一下每组对边的长度,让学生从实践中发现的特征,从而抽象概括出的定义。

其次通过教师的演示和学生实际操作,发现的特性,就是具有不稳定性。

然后认识的底和高,并会画高。

最后通过比较长方形、正方形和平行四边行的异同点,明确它们的关系:正方形是特殊的长方形,长方形、正方形都是特殊的。并用集合图表示。

在教学或练习中,既要重视直观演示,运用比较的方法,又要加强动手操作,量一量、画一画等,让学生在实践中既获得知识,又提高能力。

板书设计 

由四条线段围成的图形叫做四边形。

两组对边分别平行的四边形叫做。

特性:不稳定性。

画出两条不同的高

平行四边形 篇5

《平行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。下面是由小编为大家带来的关于《平行四边形面积》说课稿,希望能够帮到您!

一、说教材

平行四边形的面积的教学是在学习了几何初步知识、长方形、正方形的面积计算以及平行四边形、三角形和梯形的认识的基础上安排的,有助于学生利用“转化”的思想将平行四边形转化为长方形或正方形,进而推导出面积的计算方法。长方形面积计算公式是平行四边形面积计算公式的基础,而平行四边形面积计算公式又是后面学习三角形和梯形面积计算的依据。因此这节课的内容在整个教材体系中起到承上启下的作用。于是我在教学时,将充分运用转化迁移思想,重视学生动手操作与实践,引导学生用已学的旧知去获取新知,构建新的认知结构。

二、说教法学法

本节课,我将采用“自主探究、合作交流”的教学方式。通过课件演示和实践操作,激发学生参与学习的积极性。利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

三、说学生

学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成过程。

四、说教学目标及重难点

按照三个维度的要求,本节课的目标确定为三个:

1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算。

2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。

3、培养学生观察、分析、概括、推导和解决实际问题的能力。

4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

教学重点:

理解并掌握平行四边形的面积计算公式,会计算平行四边形的面积。

教学难点:

通过转化的方法理解平行四边形的面积计算公式。

教学准备:

多媒体课件;让每个学生准备一个平行四边形纸片和一把剪刀。

五、说教学设计思路

学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征,会画平行四边形的高。为了让学生更好的理解掌握平行四边形面积公式。因此,在教学中让学生经历猜想操作验证推理的过程,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形面积转化成长方形面积,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想感受到数学知识的应用价值。

六、说教学环节

我将整个教学过程划分为四步:

1、复习长方形的面积计算公式。

再现长方形面积计算公式和平行四边形的特征,温故知新,为推导平行四边形的面积公式作好铺垫。

2、用数格子的方法求平行四边形的面积使学生感受到这种方法误差大又有一定的局限性,激发寻找另一种方法。猜想平行四边形的面积可能和什么有关,让学生带着这个思考题进入探究平行四边形的面积计算的思维之中。

本环节教师呈现带有方格的平行四边形,让学生凭借独特思考,同桌交流互评的渐进过程进行充分的自主探究,再亲历和体验中初步感悟计算平行四边形的方法。这样设计,使得做到本节课的重点突破,为后面进一步学习面积公式做好铺垫。

3、动手操作,验证猜想:平行四边形面积的计算方法。

为了验证前面的猜测是否正确。学生动手操作自主探究,合作交流中感悟,探索平行四边形的面积计算方法,在这个过程中,潜移默化地将等积转化的思想渗透开来。通过转化,在旧知基础上生长,而完成知识的自我构建与生成,突破了本课的教学难点。

通过这样的教学让学生经历知识形成的过程,不仅使学生的动手能力得到提高,而且加深了学生对所学知识的理解。

4、实践运用,深化认识

数学是为生活服务的,在推导出平行四边形的面积公式之后,为了了解学生的掌握程度,检验他们能否学以致用,通过练习,使学生加深对公式的理解与应用达到熟练灵活掌握的目的,实现了学习数学的价值。让学生在运用知识解决问题的过程中,增强数学的应用意识,提高解决问题的能力。我设计下面的分层随堂练习:

(1)基本练习,检测学生直接运用公式进行计算的情况,并适时进行品德教育。

(2)深化练习,深化对推导原理的理解,加深学生对公式特征的认识。

(3)开放练习,培养学生解决问题的能力。

平行四边形教案 篇6

教学目的

1.使学生掌握用平行四边形的定义判定一个四边形是 平行四边形;

2.理解并掌握用二组对边分别相等的四边形是平行四 边形

3.能运这两种方法来证明一个四边形是平行四边形。

教学重点和难点

重点:平行四边形的判定定理;

难点:掌握平行四边形的性 质和判定的区别及熟练应用。

教学过程

(一)复习提问:

1. 什么 叫平行四边形 ?平行四边形有什么性质?(学生口答,教师板书)

2. 将 以上的性质定理,分别用命题形式 叙述出来。(如果……那么……)

根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平 行四边形性质定理的逆命题是否成立?

(二)新课

一.平行四边形的判定:

方法一(定义法):两组对边分别平行的四边形的平边形。

几何语言表达定义法:

∵AB∥C D,AD∥BC,∴四边形ABCD是平行四边形

解析:一个四边形只要其两组对边 分别互相平行,

则可判定这个四边形是一个平行四边形。

活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

方法二:两组对边分别相等的四边形是平行四边形。

设问:这个命题的。前提和结论是什么?

已知:四边形ABCD中,AB=CD,AD=BC

求 证:四边ABCD是平行四边形。

分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易 证三角形全等。(见图1)

板书证明过程。

小结:用几何语言 表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

判定一:二组对边分别相等的四边形是平行四边形

∵AB=CD,AD=BC, ∴四边形A BCD是平行四边形

练习:课本P103练习题第1题。

例题讲解:

例1已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。

求证:

分析:由我们学过平行四边形的性质中,对角相 等,得若证明四边形EBFD为平行四边形,便可得到 ,哪么如何证明该四边形为平行边形呢?可通过证 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分别为AD和BC的中点得ED=FB。

练习:2. 已知如 图7, E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。

求证:四边 形EFGH是平行四边形。

平行四边形 篇7

平行四边形面积的计算是以长方形的面积计算为基础,它为进一步学习三角形的面积,梯形面积的计算打下了基础。我在教学本节课时,采用剪拼的方法,把平行四边形转化为与它相等面积的长方形,从而把新旧知识联系起来,从长方形的面积公式推导出平行四边形的面积公式。

在本节课的教学中,我先复习长方形的面积公式,让学生说出可以通过数格子和利用公式求出长方形的面积,为下面要学习的平行四边形面积作铺垫。当让学生通过数方格说出平行四边形的面积时,学生很容易数出面积,并且说出它的底和高的长度。我及时抓住这三个量,让学生大胆猜想:平行四边形的底和高与它的面积之间可能存在什么关系呢?这个问题很快激起学生的探究欲望,为下面要探讨的平行四边形面积公式的推导做好铺垫。

为体现学生的主体地位,改变以往的“以教师为中心”的教学方式,在推导平行四边形面积公式时,我为学生创设了自由、宽松的探索空间。通过学生自学、动手画、剪拼这些操作,培养了学生的自学能力和动手操作能力,使他们变“学会”为“会学”,对学习要求中提出的第2、3个问题:转化后的图形与平行四边形有什么关系?你认为平行四边形的面积该怎样求?学生在小组合作中各抒己见,充分阐述自己的理解,这样的教学使学生乐于探索,敢于探索,也激发了学生的创新意识。

在教学完这节课后,听课老师、评课的领导对本节课进行了评价,从这节课中我看到了自己的不足之处,下面认真进行剖析:

1.课的开始复习内容过长,导致本节课新授知识部分时间不多。练习题与检测题进行的过于仓促,使基础不够好的学生没有充分理解和掌握。复习内容中指出平行四边形的底和高这部分内容可以删去,在新课教学中体现出来。

2.复习部分长方形的面积的两种求法与通过数方格求平行四边形的面积应该同时在课件中显示,进行比较,从而引入新课。

3.教学中某些环节的过渡不恰当。如:长方形的面积学生通过数方格和利用公式求出来了,平行四边形的面积学生通过数方格说出来后,可以说:除了数方格,那么能否像计算长方形的面积那样存在一个面积公式呢?很自然为下面要推导的公式作准备。

4.学习要求的设计不够合理。我提出了两个学习要求:(1)自学课本第65页。(2)小组合作完成三个问题。两个要求要综合起来体现,让学生为了完成所出示的任务,自己通过看书,小组合作交流,边看边操作来完成。

针对自己在教学中的不足,今后要加强学习,多听课、多请教,多与同科目老师交流,力争使自己在教学艺术上取得更大的进步。

一键复制全文保存为WORD
相关文章