平行四边形教案(最新6篇)

作者:无锡市藕塘中心小学 王锡东这次为您整理了平行四边形教案(最新6篇),如果能帮助到您,小编的一切努力都是值得的。

平行四边形的认识教案 篇1

教学目标

1、让学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征。

2、让学生在活动中进一步积累认识图形的学习经验,学会做一个平行四边形,会在在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形。

3、学生感受图形与生活的联系,感受平面图形的学习价值,进一步发展对“空间与图形的学习兴趣。

教学重点

进一步认识平行四边形,发现平行四边形的基本特征。

教学难点

进一步认识平行四边形,发现平行四边形的基本特征。

教具

三角形框架、长方形框架、正方形框架,分别长5cm、10cm、15cm、20cm的纸条不等,大头钉。

课时 一课时

教学过程

一、导入

1、复习学过的三角形、长方形和正方形。

师:同学们喜欢玩游戏吗?学习新课之前我们来玩一个猜图游戏。(教具三角形框架、长方形框架、正方形框架)

2、师:同学们真棒!现在老师要变一个魔术给你们看。看看你们能不能认出它。(拿出长方形教具,拉动长方形框架对角使其变为另一个图形。)根据学生的回答,板书:认识平行四边形。一边板书,一边说“今天,我们就来认识平面图形家族的另一个新成员平行四边形。相信通过这节课我们一起来进一步研究平行四边形,相信通过研究,我们会有新的收获。

二、探索新知

1、找平行四边形。

师:同学们每天都要经过校门进入校园,但是你们注意观察我们的校园了吗?翻开书本三十七页,在图中你们能找到平行四边形吗?

在主题上找,在学校里找,在身边生活中找。

师:你们还能找出生活中的一些平行四边形吗?(如活动衣架、风筝、楼梯栏杆)

2、画平行四边形

(1)师:你们想把刚才在生活中找到的平行四边形在电子图中画出来吗?(生答)在38页的点子图中画出来。

(2)展示作品,引导学生参与评价。

3、做平行四边形

(1)师:现在各小组手上都有很多纸条,那我们可不可以自己动手做一个平行四边形呢?

每一小组发教具纸条(5cm、10cm各一条,15cm、20cm各两条),用大头钉固定。同学们自己动手做平行四边形。(可随意交流。)做完后,派代表说一说心得。

(2)老师可以提问,如:

a、师:你们小组是怎样做的这个平行四边形呢?

b、师:你们在做的过程中发现了什么?等等。

4、平行四边形的特性

师:我们老师告诉我平行四边形还会听口令呢,我们来试试,我们一起喊向左--向右--变大--变小。看看你们手中的也会不会听口令呢?

设疑:师:三角形也会听口令吗?(摆弄三角形框架)

(在通过动手操作的过程中,学生不难发现平行四边形的易变性)

然后在分组让同学们拉一下三角形的框架和平行四边形的框架,进行比较,有同学们总结出:

平行四边形的特性--易变性 三角形的特性--稳定性(板书)

介绍三角形的稳定性在生活中的应用--电线杆的拉线、篮球架

介绍平行四边形的易变性在生活中的应用--升降架、伸缩拉门

(出示课件或者图片)

5、认识平行四边形的特点--对边相等

提问:师:平行四边形有几条边围成?演示:板书(上、下、左、右) 设疑:师:是否随意四条边就可以组成平行四边形呢?

(有学生总结出)从做的过程中发现是不能的,且对边相等。

小结:平行四边形的对边相等。(板书)

6、练习

(1)书本39页练习题1、2题。

(2)第三题大家一起讨论。

三、作业

总结 师:这节课我们认识了一个新图形--平行四边形,并知道我们在生活中找到它。请你们对生活中的物体在进行,去找一找我们今天认识的这个新图形。

板书设计

认识平行四边形

三角形的特性--稳定性

平行四边形的特性--易变性 右

平行四边形的特点--对边相等 下

《认识平行四边形》说课

一、说教材

认识平行四边形这节课是在学生已经直观认识平行四边形,初步掌握了长方形、正方形、三角形的特征,认识了平行与相交的基础上,通过一系列的探究实践活动继续认识平行四边形,了解对边分别平行和对边相等的特征。这部分的内容是以后学习平行四边形面积的基础,有利于提高学生的动手能力,增强创新意识,进一步发展学生对“空间与图形”的学习兴趣。

二、说目标

1、知识与技能目标

(1)理解平行四边形的概念及其特征。

(2)培养学生实践能力,观察能力、分析能力。

2、过程与方法目标

让学生通过动手操作,动眼观察,动口表达、动脑思考等方式探究新知。

3、情感态度与价值观目标

让学生感受图形与生活的密切联系,在探索中感受成功的乐趣。

三、说教学重难点

进一步认识平行四边形,发现平行四边形的基本特征。

四、说教法和学法

(一)说教法

根据本节课的教材内容特点,为了更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,(多媒体演示法为辅,教学适时运用电教媒体化静为动),激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

(二)说学法

1、根据自主性和差异性原则,让学生“观察 猜想 概括 验证 交流 应用”的学习过程中,自主参与知识的发生、发展和形成的过程,使学生掌握知识。

2、利用实际生活中的图形,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。

五、说教具和学具准备

教具:(教学课件)三角形框架、长方形框架、正方形框架。

学具:以小组为单位准备5cm、10cm、15cm、20cm不等的纸条,大头钉。

六、说教学过程

(一)猜图游戏,激趣导入。

谈话:同学们喜欢玩游戏吗?我们在上课之前玩一个猜图游戏。

(设计意图:通过猜图游戏活动,让学生对以前学过的知识印象更深。)

(二)联系生活,初步感知

寻找我们身边、生活中的平行四边形。

(设计意图:《数学课程标准》指出:“学生的数学学习内容应当是现实的,有意义的,富有挑战性的。”选择学生熟悉和感兴趣的素材,吸引学生的注意力,激发学生主动参与学习活动的热情,让学生初步感知平行四边形。)

(三)学生自主探究

1、在点子图上画,利用纸条自己做。

(设计意图:这个环节的设计,本着学生为主体的思想,敢于放手,既体现了教师的导和学安生的学,又培养了动手、动脑能力,让学生的多种感官参与活动,让学生在操作中初步体验平行四边形的一些特点。)

2、借助手中的材料研究平行四边形的特点

以小组为单位,观察制作出来的平行四边形,研究其特征。

根据平行四边行的特点判断一个四边形是不是平行四边形。出示“想想做做”第一题让学生判断。提问:为什么第2个图形不是平行四边形?

(设计意图:这个环节的设计给学生提供了充分的自主探索的空间,引导学生利用手中材料选择感兴趣的自己去发现和交流,使学生在思维的碰撞和交流中得出结论。)

七、全课总结

(设计意图:让学生从小养成对所学知识进行归纳、整理、总结。)

平行四边形教案 篇2

一、教材分析

1、说课内容:冀教版义务教育课程标准实验教科书五年级数学上册第96页和第97页《平行四边形面积》。

2、教材编排特点:

本节课是在学生已经初步认识了长方形、正方形和三角形以及平行四边形的基础上进行教学的,本节课是今后继续学习关于平行四边形和其他几何图形知识的基础,同时对发展学生的空间观念具有举足轻重的作用。这节课运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。

学习目标:割补、拼摆等方法,探索并掌握平行四边形面积公式,会计算平行四边形面积。

理解拼成的长方形和原来的平行四边形的关系。

感受平行四边形面积在日常生活中的应用。

重点:掌握并会用公式计算平行四边形的面积。

难点:用转化的数学思想和方法来探索平行四边形的面积公式。

二、说教法

中年级学生的思维形式正处在形象思维过渡到抽象思维的阶段。因此本节课的教学,以学生自学为主,通过观察比较小组讨论和展示使学生从感性认识上升到理性认识。学生丰富的感性材料,调动了学生多种感官,获取应有的知识。所以教法的选择以自学、对话、评价的堂结构。

三、说学法

为了达到本节课的教学目标,我始终贯彻主体性和活动性的教学思想,利用转化的思维方式,当堂检测,使学生能更好掌握所学知识,收到良好效果。指导学生运用以下学习方法:(1)动手操作的方法;(2)小组合作的方法;(3)观察比较的方法。

四、说教学过程

(一)热身训练

课的开始,我准备了三个练习题学生很快就做完了,通过学生的汇报可以知道学生对就知识掌握良好。又通过过的语言;长方形、正方形面积我们会求,那么平行四边形面积怎样求呢?这节课我们就一起来探究平行四边形面积。(板书课题)

(二)探究新知

我国著名的叶澜教授曾提出:要把课堂还给学生,让课堂焕发生命的活力。是的,学生是学习的主人,我们的教学最终要落实到个体的学习行为上,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而化为己有。因此,在提出本节研究的问题后,我准备指导学生运用自学的学习方式,研究平行四边形的特点。

(1)课本第96页、第97页内容。让学生开动脑筋想一想、剪一剪、拼一拼,并完成任务一。在探究活动中,尊重学生独立思考的成果,鼓励学生想出多种研究方法,尽量让学生获得成功的体验。

接着以小组为单位展示研究结果,进行组际交流评价,逐步完善、归纳、平行四边形的形成。得出自己的拼法。

(设计意图:这样的设计使学生真切体验了通过自己的努力,合作,探索获得新知识的成就感。课堂上让学生充分展示自己思维过程,使学生逐步从“学会”到“会学”,最后达到“好学”的美好境界。)

(2)二通过学生认真观察比较利用转化思想,进行小组合作,小组合作之前,我先讲清合作的规则、要求。议一议:自己观察割补前后的图形有什么关系?你发现了什么?

(1)交流得出( )

(2)平行四边形的底与长方形的长( )

(3)平行四边形的高与长方形的宽( )

(4)它们的面积( )

那么

长方形面积=( )×( )

平行四边形面积=( )×( )

用字母s表示面积,a表示底,h表示高,s=()

自主反思:

通过本节课的学习,我学会了“思维从动作开始,儿童可以理解的首先是自己的动作。”通过操作,可以使学生获得丰富的感性知识,可以为学生创设一个活动、探索、思考的环境,使他们主动参与知识的形成过程。所以在这一环节我设计了以下活动:

想一想、剪一剪、拼一拼、说一说、做一做

(设计意图:这些实践活动是学生乐于接受的,在活动中人人参与,学生亲身感知了不同方式下的平行四边形,对平行四边形的特征加深认识。)

练习是掌握知识、形成技能、发展智力的重要环节。根据学生年龄特点和认知规律,本着趣味性、思考性、综合性相结合的原则,我设计以下几组练习题:

达标检测

一.我会填:

1、一个平行四边形的底为a,高为h,它的面积是( )。

2、一个平行四边形可以有( )条高。

3、平行四边形的面积是由它的( )和( )决定的。

4、一个活动的平行四边形木条框拉一拉,( )不变,( )变了,( )也随着变化了。

二、对错我来判:

1、一个平行四边形只有两条高。( )。

2、平行四边形的面积等于长方形的面积。( )。

3、面积相等的两个平行四边形,一定等底等高。( )。

三、我会算:

1、如图一,书上第97页,练一练第一题。

已知,a=4.8米,h=3.5米,求平行四边形面积?

2、已知,s=3.2分米,h=1.6分米,求平行四边形的底?

四、拓展:

1、动手量一量自己的手中平行四边形的底和高,求出它的面积。

2.、完成书上第97页问题讨论。

平行四边形教案 篇3

五年级上册第79—81页。

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

掌握平行四边的面积计算公式,并能正确运用。

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

动手操作、小组讨论、演示等

每个学生一把剪刀,一个平行四边形

一、导入:

1、出示课本p79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长x宽

2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”

二、探索新知

1、用数方格的方法验证:

我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?

2、猜测:

谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?

3、探究平行四边形面积公式

不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)

学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”

小组讨论:平行四边形转化成长方形后,什么变了?什么没变?

转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?

平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底x高)(字母式)

小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。

刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。

4、应用:出示例1,谁来说一说你是怎么做的?

要求平行四边形的面积,我们必须知道哪些条件?

三、巩固练习

四、提高练习

五、总结

在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。

平行四边形教案 篇4

1.引导学生通过观察、讨论感知生活中的平行现象。

2.帮助学生初步理解平行是同一平面内两条直线的位置关系,初步认识平行线。

3.培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。

[教学重点]正确理解“同一平面内 ”“互相平行”等概念,发展学生的空间想象能力。

[教学难点]画平行线

[教具、学具准备]课件,水彩笔,尺子,三角板,小棒。

[教学过程]

一、创境引入,观察发现

生开窗户。

开窗户过程中,这扇窗户在做什么运动呢?

是的,平移是我们上个学期学过的知识,你们学得很好。我们看,窗户的一条边一开始在这个位置;平移之后,到了这个位置。你知道这条边与这条边的位置之间有什么关系吗?

这节课就让我们一起来学习平行线。

老师这里有几幅图,请同学们找一找,哪些图画出了你心目中的平行线?

看来,同学们对平行线都有自己的认识。到底你的想法对不对呢?,学完这节课后,相信你一定能得到一个肯定的答案。

二、积极参与,探究感受

窗户这两条直直的边我们可以看成是两条线段,这条线段如果向两端无限延伸、延伸。闭上眼睛想象一下,你看到的两条直线会怎样?会相交吗?

师:都说眼见为实,这两条直线我看到的部分的确是不相交的,可是无限延伸之后我看不到,你凭什么说他们永远不会相交呢?

宽度一样,其实就是说他们的距离处处相等。(课件验证)

因为他们的距离处处相等,无限延伸之后始终保持着这样的距离,所以,他们永远不会相交。

(板书并口述:永不相交的两条直线相互平行)

两条直线相互平行,我们也可以说其中一条就是另一条的平行线。

如果我们把两条直线分别标上名字,ab和cd,我们就说直线ab平行于直线cd.

我现在如果把这两条直线都斜过来,现在他们相互平行吗?为什么?

生活中的平行线

这些直线是相互平行的,生活中你还能找到这样的平行线吗?

看来生活中的平行线还真不少。有个小朋友叫淘气,他发现所有的窗户都太像了,没有一点儿创意。于是,他设计了这样的新型窗户。

你能接受淘气的设计吗?为什么?

刚才同学们找到的都是静止的,现在让我们看看运动中的平行线。

每周一我们都要举行升国旗仪式。国旗的上边从这里平移到了这里,他们是相互平行的。

再看看这副图。箭头从这里平移到这里。同学们,线段 hg一开始在这里,平移后到了h1g1,线段hg和线段h1g1平行吗?那你能从平移前后的箭头中,找出类似的相互平行的线段吗?

画平行线

教师演示三角尺平移法,

注意点:1、对 2、靠 3、移 4、画

学生画。

三、运用知识,解决问题

四、课堂总结,概括新知

学了这节课后,你对平行线有什么新的认识吗?

随着学习的不断深入,我们对平行的认识也会越来越深刻。

平行四边形教案 篇5

教学目标

1、知识目标

(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

2、能力目标

(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标

渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

教学重点、难点

重点:平行四边形的概念及其性质.

难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用

教学方法:讲解、分析、转化

教学过程设计

一、利用分类、特殊化的方法引出平行四边形的概念

1.复习四边形的知识.

(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

(2)将四边形的边角按位置关系分为两类:

教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

2.教师提问:四边形中的两组对边按位置关系分为几种情况?

引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

3.对比引出平行四边形的概念.

(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

练习1(投影)

如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

二、探索平行四边形的性质并证明

1.探索性质.

启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

(3)对角线

⑤对角线互相平分(性质定理3)

教师注意解释并强调对角线互相平分的含义及表示方法.

2.利用化归的方法对性质逐一进行证明.

(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

(3)写出证明过程.

3.关于“两条平行线间的平行线段和距离”的教学.

(1)利用性质定理2

导出推论:夹在两条平行线间的平行线段相等.

①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

练习2

(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

练习3

在图4-15(d)中,

①点A与点C的距离是线段__的长;

②点A到直线l2的距离是线段__的长;

③两条平行线l1与l2的`距离是线段__或__的长;

④由推论可得:两条平行线间的距离__.

三、平行四边形的定义及性质的应用

1.计算.

例1填空.

(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

2.证明.

例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

分析:

(1)尽量利用平行四边形的定义和性质,避免证三角形全等.

(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

分析:

(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

3.供选用例题.

(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

四、师生共同小结

1.平行四边形与四边形的关系.

2.学习了平行四边形哪些方面的性质?

3.两条平行线的距离是怎样定义的?有什么性质?

五、作业

课本第143页第2,3,4,5,6题.

课堂教学设计说明

本教学设计需2课时完成.

这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

平行四边形及其性质

教学目标

1、知识目标

(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

2、能力目标

(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标

渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

教学重点、难点

重点:平行四边形的概念及其性质.

难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用

教学方法:讲解、分析、转化

教学过程设计

一、利用分类、特殊化的方法引出平行四边形的概念

1.复习四边形的知识.

(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

(2)将四边形的边角按位置关系分为两类:

教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

2.教师提问:四边形中的两组对边按位置关系分为几种情况?

引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

3.对比引出平行四边形的概念.

(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

练习1(投影)

如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

二、探索平行四边形的性质并证明

1.探索性质.

启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

(3)对角线

⑤对角线互相平分(性质定理3)

教师注意解释并强调对角线互相平分的含义及表示方法.

2.利用化归的方法对性质逐一进行证明.

(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

(3)写出证明过程.

3.关于“两条平行线间的平行线段和距离”的教学.

(1)利用性质定理2

导出推论:夹在两条平行线间的平行线段相等.

①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

练习2

(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

练习3

在图4-15(d)中,

①点A与点C的距离是线段__的长;

②点A到直线l2的距离是线段__的长;

③两条平行线l1与l2的距离是线段__或__的长;

④由推论可得:两条平行线间的距离__.

三、平行四边形的定义及性质的应用

1.计算.

例1填空.

(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

2.证明.

例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

分析:

(1)尽量利用平行四边形的定义和性质,避免证三角形全等.

(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

分析:

(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

3.供选用例题.

(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

四、师生共同小结

1.平行四边形与四边形的关系.

2.学习了平行四边形哪些方面的性质?

3.两条平行线的距离是怎样定义的?有什么性质?

五、作业

课本第143页第2,3,4,5,6题.

课堂教学设计说明

本教学设计需2课时完成.

这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

平行四边形 篇6

第二课时:平行四边形面积的计算练习课

教学内容:练习二1 — 5题

教学目标:使学生进一步熟悉平行四边形的面积公式并能熟练地加以运用。

教学过程:

练习二:

第1题:使学生画出的平行四边形面积与图中长方形面积相等,平行四边形底与高的乘积为15。所画平行四边形的底和高分别为5和3、3和5或15和1。

第2题:学生在测量时一定要注意底和高必须是对应的一组。

第3题:要告诉学生用途中标出的数据计算出来的面积是近似值。这种近似的测量和计算在实际生活中经常用到。

第5题:可以让同桌两人分别准备一样大小的长方形框架。操作时,一个长方形不动,另一个长方形拉成平行四边形。通过观察、比较后要明确两点:

1、把长方形拉成平行四边形后,周长没变,面积变了。

2、拉成的平行四边形越是显得扁平,它的高就越短,面积就会越小

一键复制全文保存为WORD
相关文章