作为一位优秀的人民教师,就难以避免地要准备教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!下面是的小编为您带来的有理数优秀教案(优秀9篇),您的肯定与分享是对小编最大的鼓励。
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力,数学教案-有理数的加减混合运算。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。
4、先把正数与负数分别相加,可以使运算简便。
5、在交换加数的位置时,要连同前面的符号一起交换。
教学目标:
1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别;
2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。
重点:在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。
难点:在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。
教学过程:
一、知识导向:
通过上节课对“负数“概念的引入,通过对数范围的补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。
二、新课拆析:
1、引例:(1)请学生说出负数的特征,并指出实例说明。
(2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。
2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:
正整数:如1,2,34,…
零:0
负整数:如-1,-3,-5,…
正分数:如 …
负分数:如 -0.3,…
由此我们有:
概括:正整数、零和负整数统称为整数;
正分数、负分数统称为分数;
整数和分数统称为有理数。
然后根据我们的概括,我们可以对有理数进行如下的分类
分类一: 分类二:
正整数 正整数
整数 零 正有理数 正分数
有理数 负整数 有理数 零
分数 正分数 负有理数 负整数
负分数 负分数
3、有关集合的简单知识:
概括:把一些数放在一起,就组成一个数的集合,简称为数集;
所有的有理数组成的数集叫做有理数集;
所有的整数组成的数集叫做整数集;……
例:把下列各数填入表示它所在的数值的圈里:
-18,3.1416,0,20__,-0.142857,95%
正整数 负整数
整数集 有理数集
三、巩固训练: P20 ,练习:1,2,3
四、知识小结:
从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。
五、作业:
P20-21 习题2.1:2,3,4
教学目标
知识与技能:
熟记有理数的减法法则,能熟练进行有理数减法运算。
过程与方法:
1、借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;
2、经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。
情感态度价值观:
通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。
教学重、难点
重点:有理数减法法则和运算
难点及突破:有理数减法法则的推导
教学用具
多媒体
教学过程设计
一、导入
我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?
生:减法
师:今天我们一起来学有理数的减法!
二、一起研究
下表是中央气象台发布的xx年1月28日天气预报中部分城市的和最低气温统计表
城市/°C最低气温/°C
昆明92
杭州6-2
北京-2-12
温差怎么表示?(温差=-最低气温)
1、那么怎么表示这一天的温差呢?学生填表回答
城市表示温差的算式观察到的温差/°C
昆明9-27
杭州
北京
结论:昆明的温差可表示成9-2=7°C
杭州的温差可表示成6-(-2)=8°C
北京的温差可表示成-2-(-12)=10°C
2、现在我们来看这样一组算式,填空:
9+________=7; 6+______=8; -2+_______=10
3、比较:9-2=7 9+(-2)=7
6-(-2)=8 6+2=8
-2-(-12)=10 -2+(+12)=10
思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。
怎样把加法转化为减法运算?
法则:减去一个数,等于加上这个数的相反数。
4、对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?
例1(略)
注意:减法转化为加法时,减数一定要改变符号
例2 (略)
三、小结
1、理解有理数减法运算的法则。
2、熟悉有理数减法运算的两个步骤
3、有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。
四、板书设计
1、6 有理数减法
1、减法法则:减去一个数,等于加上这个数的相反数
a-b=a+(-b)
2、例
教学目标
知识与技能:
熟记有理数的减法法则,能熟练进行有理数减法运算。
过程与方法:
1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;
2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。
情感态度价值观:
4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。
教学重、难点
重点:有理数减法法则和运算
难点及突破:有理数减法法则的推导
教学用具
多媒体
教学过程设计
一、导入
我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?
生:减法
师:今天我们一起来学习有理数的减法!
二、一起研究
下表是中央气象台发布的20xx年1月28日天气预报中部分城市的和最低气温统计表
城市/°C最低气温/°C
昆明92
杭州6-2
北京-2-12
温差怎么表示?(温差=-最低气温)
1.那么怎么表示这一天的温差呢?学生填表回答
城市表示温差的算式观察到的温差/°C
昆明9-27
杭州
北京
结论:昆明的温差可表示成9-2=7°C
杭州的温差可表示成6-(-2)=8°C
北京的温差可表示成-2-(-12)=10°C
2.现在我们来看这样一组算式,填空:
9+________=7; 6+______=8; -2+_______=10.
3.比较:9-2=7 9+(-2)=7
6-(-2)=8 6+2=8
-2-(-12)=10 -2+(+12)=10
思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。
怎样把加法转化为减法运算?
法则:减去一个数,等于加上这个数的相反数。
4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?
例1(略)
注意:减法转化为加法时,减数一定要改变符号
例2 (略)
三、练习:
P28 1、2
四、小结
1.理解有理数减法运算的法则。
2.熟悉有理数减法运算的两个步骤
3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。
五、板书设计
1.6 有理数减法
1.减法法则:减去一个数,等于加上这个数的相反数
a-b=a+(-b)
【教学目标】
知识目标:
1.理解自然数、分数的产生和发展的实际背景。
2.通过身边的例子体验自然数与分数的意义和在计数、测量、标号和排序等方面的应用。
能力目标:
1.通过同学之间的交流、讨论,以面对面互动的形式,完成合作交流,培养良好的与人合作的精神,感受集体的力量,体验成功的喜悦。
2.从具体的例子使学生感受数学来源于生活,生活离不开数学,从而增加学习数学的兴趣。
【教学重点、难点】
重点:自然数和分数的意义及运用自然数、分数的计算解决简单的实际问题。
难点:用自然数、分数(小数)的计算解决简单的实际问题。
【教学过程】
一、新课引入
小学里,我们学习了自然数和分数,这节课我们就来回顾一下这部分的内容:从自然数到分数。
二、新课过程
用多媒体展示杭州湾大桥效果图,并显示以下报道:世界上最长的跨海大桥杭州湾大桥于2003年6月8日奠基,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。
师问:你在这段报道中看到了哪些数?它们都属于哪一类数?
学生很快解决这两个问题之后,由上面这几个数,师生共同得出自然数的几个应用:
⑴属于计数如8万辆、5年后、6车道 ⑵表示测量结果如全长36千米 ⑶表示标号和排序如2003年6月8日、第一座等
显示以下练习让学生口答
下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?
(1)2002年全国共有高等学校2003所。 (标号和排序 计数)
(2)小明哥哥乘1425次列车从北京到天津,然后乘15路公交车到了小明家。(标号和排序 标号和排序)
(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止是世界上第5高楼。 (测量结果,计数,标号和排序,标号和排序)
做完练习之后师:随着生活和生产的需要,自然数已经不能满足实际需要了。如
(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(18 )
(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?(1.68米)
由于分配和测量等实际需要而产生了分数(如第(1)题)和小数(如第(2)题),它们是表示量的两种不同方式,分数小数之间可以互相转化。分数可以化为小数,因为分数可以看作两个整数相除 如35 =35=0.6,13 =0.333反过来小学里学过的小数都可以化为分数,如0.31=31100
三、典例分析
利用自然数、分数的运算可以解决一些实际问题
例1 (多媒体展示)详见书本合作学习第1题
师:请同学们分小组进行讨论,帮助小惠合理地安排时间,在列算式之前,首先解决以下几个问题
(1)从温州出发到21:40在杭州上火车,这一段时间包括哪几部分时间?
(2)市内的交通和检票进站要花30到40分钟,这两个数据在计算时用哪个数据?
(3)最迟的含义是什么?
由一学生回答,而后给出解题思路
用自然数列: 400100=4(时)
21时40分4时40分=17时
用分数列: 400100=4(时)
2123 时4时23 时=17时
由上题可以看到许多实际问题可以通过自然数和分数的运算得到解决。
例2 (多媒体展示)详见书本合作学习第2题
师:请同学们思考我们要解决的问题涉及哪几个量?他们之间有怎样的数量关系?
生:有销售总额度,发行成本,社会福利资金,中奖者奖金
他们之间的关系:销售总额度=发行成本+社会福利资金+中奖者奖金
发行成本=15% 销售总额度
(1)中奖者奖金总额:4000-15%4000-1400=2000(万元)
(2)以小组为单位进行探究活动,而后由一学生回答给出解题思路
思路1:在社会福利资金提高10%,发行成本保持不变,中奖者奖金总额减少6%的情形下:
销售总额度为:600+1400(1+10%)+2000(1-6%)=40204000 所以方案不可行。
思路2:在销售总额度不变的条件下,为使社会福利资金提高10%,发行成本保持不变
这时中奖者奖金总额变为:4000-1400(1+10%)-600=1860(万元)
原来的奖金总额是2000万元,减少了(2000-1860)2000=7%6% 所以方案不可行。
思路3:销售总额度=发行成本+社会福利资金+中奖者奖金 在这个式子中,由于销售总额与发行成本保持不变,当提高的社会福利资金等于减少的中奖者奖金额时,这种方案可行,否则不可行。所以问题(2)可以用如下算式求解:20006%=120(万元) 140010%=140(万元)因为120140,所以方案不可行。
也可以用20006%-140010%=120-140
算式中被减数小于减数,能否用已学过的自然数和分数来表示结果?看来数还需作进一步的扩展,这就是我们下节课要讲的内容,在很多实际生活中,还存在着许多自然数、分数还不能满足人们生活和生产实际的需要的例子,请举个例子?(气温零上温度与零下温度的表示,飞机上升5米与下降5米的表示等)
课内练习见书本1和2 (注第2题首先让学生了解一米有多长,再估计)
四、探究学习
1 .由于商场在搞活动,一件衣服的价格先上涨了10%,后又下降了10%,则此时这件衣服的价格比原价是贵了还是便宜了?
五、小结
可采用先让学生谈谈本节课所学,然后教师补充的形式。本节课主要讲了自然数、分数的意义及会用自然数、分数的计算解决简单的实际问题。
六、布置作业
【教学目标】
1、巩固有理数乘法法则;
2、探索多个有理数相乘时,积的符号的确定方法、
【对话探索设计】
探索1
1、下列各式的积为什么是负的?
(1)—2345
(2)2(—3)4(—5)6789(—10)、
2、下列各式的积为什么是正的?
(1)(—2)(—3)456
(2)—2345(—6)78(—9)(—10)、
观察1
P38、 观察
思考归纳
几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
(见P38、思考)
与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值
例题学习
P39、例3
观察2
P39、 观察
练习
P39、练习
作业
P46、7、(1),(2)(3),8,9,10,11、
补充练习
1、(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=—3呢?
(2)a与2a哪个大?
(3)判断:9a一定大于2a;
(4)判断:9a一定不小于2a、
(5)判断:9a有可能小于2a、
2、几个数相乘,积的符号由负因数的个数决定 这句话错在哪里?
3、若ab,则acbc吗?为什么?请举例说明、
4、若mn=0,那么一定有( )
(A)m=n=0、(B)m=0,n0、(C)m0,n=0、(D)m、n中至少有一个为0、
5、利用乘法法则完成下表,你能发现什么规律?
3210—1—2—3
39630—3
2622
1321
—1
—2
—3
6、(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为—a,你认为哪家商店该彩电的降价的百分率大?为什么?
(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1、2a,你认为哪家商店该彩电的降价的百分率大?为什么?
教学目的:
1、了解计算器的性能,并会操作和使用;
2、会用计算器求数的平方根;
重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;
难点:乘方和开方运算;
教学过程:
1、计算器的使用介绍(科学计算器)
初一上册数学一单元教案。png
2、用计算器进行加、减、乘、除、乘方、开方运算
例1用计算器求下列各式的值。
(1)(-3.75)+(-22.5) (2)51.7(-7.2)
解(1)
初一上册数学一单元教案。png
(-3.75)+(-22.5)=-26.25
(2)
初一上册数学一单元教案。png
51.7(-7.2)=-372.24
说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入。
随堂练习
用计算器求值
1.9.23+10.2 2.(-2.35)×(-0.46)
答案1.37.8 2.1.081
教学目标:
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能把给出的有理数按要求分类。
过程与方法:经历本节的学习,培养学生分类讨论的观点和正确进行分类的能力。
情感态度与价值观:通过本课的学习,体验成功的喜悦,保持学好数学的信心。
教学重点:掌握有理数的两种分类方法
教学难点:会把所给的各数填入它所属于的集合里
教学方法:问题引导法
学习方法:自主探究法
一、情境诱导
在小学我们学习了整数、分数,上一节课我们又学习了正数、负数,谁能很快的做出下面的题目。
1、有下面这些数:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)将上面的数填入下面两个集合:正整数集合{ },负整数集合{ },填完了吗?
(2)将上面的数填入下面两个集合:整数集合{ },分数集合{ },填完了吗?
把整数和分数起个名字叫有理数。(点题并板书课题)
二、自学指导
学生自学课本,对照课本找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
附:自学提纲:
1.___________、____、_______统称为整数,
2._______和_________统称为分数
3.____ ______统称为有理数,
4、在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数: ;正整数: 、负整数: 、正分数: 、负分数:。
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
1、整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.
2、判断下列说法是否正确,并说明理由。
(1)有理数包括有整数和分数。
(2)0.3不是有理数。
(3)0不是有理数。
(4)一个有理数不是正数就是负数。
(5)一个有理数不是整数就是分数
3、所有的正整数组成正整数集合,所有负整数组成负整数集合,依次类推有正数集合、负数集合、整数集合、分数集合等,把下面的有理数填入它属于的集合中(大括号内,将各数用逗号分开):
杨桂花:1.2.1有理数教学设计
正数集合:{ …} 负数集合:{ …}
正整数集合:{ … } 负分数集合:{ …}
4、下列说法正确的是( )
A.0是最小的正整数
B.0是最小的有理数
C.0既不是整数也不是分数
D. 0既不是正数也不是负数
5、下列说法正确的有( )
(1)整数就是正整数和负整数(2)零是整数,但不是自然数(3)分数包括正分数和负分数(4)正数和负数统称为有理数(5)一个有理数,它不是整数就是分数
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
教学目标
1、使学生正确理解数轴的意义,掌握数轴的三要素;
2、使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;
3、使学生初步理解数形结合的思想方法。
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。
难点:正确理解有理数与数轴上点的对应关系。
课堂教学过程设计
一、从学生原有认知结构提出问题
1、小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2、用“射线”能不能表示有理数?为什么?
3、你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴。
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃。
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。具体方法如下(边说边画):
1、画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2、规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3、选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴。
进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。
三、运用举例变式练习
例1画一个数轴,并在数轴上画出表示下列各数的点:
例2指出数轴上A,B,C,D,E各点分别表示什么数。
2、说出下面数轴上A,B,C,D,O,M各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。
四、小结
指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法。
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。
五、作业
课堂教学设计说明
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。