三角形的性质教案【优秀6篇】

作为一名专为他人授业解惑的人民教师,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么教案应该怎么写才合适呢?下面是小编辛苦为大家带来的三角形的性质教案【优秀6篇】,希望可以启发、帮助到大家。

角形的性质教案 篇1

教学建议

知识结构

重点、难点分析

相似三角形的性质及应用是本节的重点也是难点.

它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究.相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.

它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.

教法建议

1。教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等

2。教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答

3。在知识的巩固中要注意与全等三角形的对比

(第1课时)

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的'其他性质(见图).

建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

∽ ,

教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

分析示意图:结论→∽(欠缺条件)→∽(已知)

∽ ,

BM=MC,

∽ ,

以上两种情况的证明可由学生完成.

[小结]

本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

七、布置作业

教材P241中3、教材P247中A组3.

八、板书设计

初中数学等腰三角形性质教学设计 篇2

一、教学目的

使学生熟练地掌握等腰三角形的性质.

二、教学重点、难点

重点:等腰三角形性质的应用.

难点:添加合适的辅助线.

三、教学过程

复习提问

1 .等腰三角形的性质.

2.等腰三角形的底角一定是_角?

3.等腰三角形的底角为20°,求它的顶角度数.

引入新课

等腰三角形一腰上的中线把它的周长分为15cm和6cm的两部分,求这三角形各边的长.

学生可能利用算术的方法,计算出腰长为10底边长为1.也可能算不出来,这里教师可作如下引导:

在图1中,AB=AC,D为AB的中点(即AD=DB),设 AD=xcm,则 AB=AC=2cm(中线定义).由AC+AD=15cm,得

2x+x=15.

解得 x=5,……

本题是利用列方程的方法解得的,此法对于某些几何计算题来说,简捷而有效.

新课

例2 已知:图2,在△ABC中,AB=AC,点D在AC上,且 BD=BC=AD.求△ABC各角的度数.

分析:欲求三角形各角度数.只需求出∠A度数,把∠A度数作为一个未知数x,则∠A=∠1=x°,∠2=∠A+∠1=2x°,∠ABC=∠C=∠2=2x°.应用三角形内角和定理于△ABC,求出方程所对应的几何等式:∠A+∠ABC+∠C=180°,即可得出关于x的方程.

例3 已知:如图3,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.

通过分析使学生发现,要作AF⊥BC即底边上的高这条辅助线(这是证明的关键所在),并告诉学生这是等腰三角形中一种常见的辅助线.利用这条辅助线就很容易证得结论.并说明,这是利用等腰三角形的“三线合一”性质来证明的题目.

小结

1.列方程解几何计算题是几何计算题的一种重要解法,在这种解法中,寻求几何等式(如例2中∠A+∠ABC+∠C=180°)是基础,把几何等式的各项转化为未知数x的代数式是关键(如∠A=x°,∠ABC=∠C=2x°).

2.对于等腰三角形的”三线合一”性要灵活运用.

练习:略

作业:略

思考题:例3中辅助线改为△ABC的顶角平分线AF,写出证明过程.

四、教学注意问题

1.等腰三角形性质的灵活、综合应用,防止依赖于全等三角形证明线段或角相等的思维定势.

2.要防止“三线合一”性在应用中出现的错误.

角形的性质教案 篇3

教学目标

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

3、结合实例体会反证法的含义。

教学重点

等腰三角形的关性质定理和判定定理。

教学难点

能够用综合法证明等腰三角形的关性质定理和判定定理。

教学方法

教学后记

教学内容及过程

教师活动学生活动

一、等腰三角形性质的探究

1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。

2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。

3.分别演示:

∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。

4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。

5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。

6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。

7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。

8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。

9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的'表述可以提高学生的思维能力。

10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。

11.小结这两个课时的内容。

作业:

同步练习

板书设计:

1.积极思考,回忆以前所学知识,联想新问题。

2.认真观看例1图形中线段的关系,积极思考,认真听讲。

3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。

4.在已经探究了角的大小的改变对于BD,CE的等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。

5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。

6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。

7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。

8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。

9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。

10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。

11.体会老师的讲解,并根据小结记忆掌握知识。

(学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

《三角形的特性》的优秀教学设计 篇4

教学目标

1、通过观察和操作认识三角形,掌握三角形的概念,理解三角形的含义;

2、从实例中感知三角形的稳定性以及三角形任意两边之和大于第三边,并能运用知识解决实际问题;

3、认识三角形的高,掌握三角形高的画法,能画出任意三角形的一条高。

教学重难点

重点:理解三角形的含义,掌握三角形的概念。

难点:掌握三角形高的画法,能画出三角形的高。

教学准备

课件、平行四边形和三角形的教具、三角尺。

主要教法选择:观察法、知识迁移法

教学设过程

一、导入

请每位同学从你的抽屉里拿出两根小棒,试一试,你能摆出什么图形?

谁来说说自己摆出了什么图形?(指名说)

下面请每位同学再添上一根小棒,能摆成什么图形?(指名说)

用屏幕出示学生们可能摆出的图形,提问:你能说说自己摆的是什么图形吗?那么,在同学们摆出的图形中,那些是三角形?

今天,我们就来学习三角形的特性。(板书课题:三角形的特性)

二、学习新课

1、学习三角形的定义及组成

⑴在我们的生活中,也有许多三角形,你能说出哪些物体上有三角形吗?(让学生充分发言)

同学们说了这么多,其实在我们的校园中也有许多的三角形,我们一起去看看吧!(播放录像)

⑵刚才我们一起观察了生活中的三角形,那么你能说说三角形有什么共同的特点吗?(有三条边,三个角,三个顶点等)

提问:那你能说一说什么样的图形叫做三角形吗?(三条线段围成的图形)你认为这句话中哪个词比较重要?(围成)为什么?(三角形是封闭图形)

那么这三条线段应该怎样去围呢?(每相邻的两条线段端点相连)

请学生互相说一说,什么是三角形。(同桌互说,再指名说)

2、学习两边之和大于第三边

⑴小组活动:请组长将本组的小棒分给组员,每人三根小棒,摆一个三角形,看谁摆得又对又快!

有学生发现自己的三根小棒摆不成三角形,这是怎么回事啊?

小组研究:为什么有的三根小棒摆不成三角形?

小组汇报,并总结:三角形任意两边的和大于第三边。

⑵利用所学知识解决实际问题

屏幕出示例3的图,让我们帮助小明解决一个问题:小明每天上学从哪条路走最近?为什么?(中间的这条路最近,两点之间直线距离最短;三角形两边之和大于第三边)

3、学习三角形的稳定性

⑴游戏

让我们来轻松一下,做个游戏,比一比谁的力气大。

游戏规则:每人一个图形,拉动这个图形,只要使它的形状发生变化,就算赢。

请学生推荐两名力气比较大的学生(一男一女),出示教具,一个三角形,一个平行四边形,先让女生选择一个图形,另外一个就是男生的。

请大家预测一下,男生和女生谁会赢?为什么?

得出结论:平行四边形容易变形,三角形具有稳定性。

⑵三角形具有稳定性,那么,要想使这个平行四边形也能够固定住,该怎么办呢?(加上一根木条,形成两个三角形。)

正是因为三角形具有稳定性,所以在生活中的运用也非常广泛。

⑶你瞧:这张桌子摇摇晃晃多危险啊!有什么办法加固它呢?

斜着钉两根木条,组成三角形。

4、学习三角形的高

⑴刚才我们知道了三角形有三个顶点,我们可以用大写字母来表示点,例如,我们可以给这三个点分别取名字为A、B、C,那么这个三角形就可以称为三角形ABC,三角形的三条边就可以分别称为AB、AC、BC,下面想请同学上来指一指,每一个顶点分别对应哪条边。

⑵教师边示范边讲解:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

提醒注意:高要画成虚线,而且要画上垂直符号。

想一想:一个三角形中能画出几条高?为什么?(有三条高,因为每个三角形有三个顶点)

⑶学生练习

请每位学生在课本86页,练习十四第一题,请你画出第一个三角形的高。

提醒注意:三角形的高要画成虚线,并且要画上垂直符号。

你能画出几条高?那么,另外两个三角形的高你会画吗?试一试,好吗?

(让学生互相检查,并说说怎么检查)

三、全课总结

今天这节课,我们一起进一步认识了三角形,我们知道了三角形是由三条线段围成的图形,每相邻两条线段的端点相连;三角形有三条边,三个角,三个顶点,具有稳定性,而且三角形的任意两条边之和大于第三边。

我们还认识了三角形的高,并且学会了给三角形画高,不同的三角形所在位置不同,我们下一节课再继续研究。

初中数学等腰三角形性质教学设计 篇5

教材分析:

《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等、及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。

学情分析

学生在本节课学习之前,已经知道了全等三角形和轴对称相关知识,那么等腰三角形又有怎样性质呢?鉴于八年级学生的年龄、心理特点及认知水平,有进一步探究新知的愿望。本节课采用层层递进的问题启发学生的思考,让学生自主探究、合作交流中获取知识。

教学目标:

知识目标:掌握等腰三角形的有关概念和相关性质。并能用其解决有关问题。

能力目标:通过对性质的探究活动和例题的分析,提高学生分析问题和解决问题的能力。

情感目标:在探究对等腰三角形性质活动中,让学生多动手、多思考,培养学生之间的合作精神。

教学重难点:

教学重点:探索等腰三角形“等边对等角”和“三线合一”的性质。

教学难点:利用等腰三角形的性质解决有关问题。

教学方法:

本课立足于学生的“学”,采用小组合作探究,师生互动,突出“学生是学习的主体”,让他们在感受知识的过程中,提高他们的知识运用能力。学习中要求学生多动手、多观察、多思考,激发学生学习数学的兴趣,更好的让学生处在“做中学”“学中做”的良好学习氛围之中。

教学过程:

课前准备:课前安排学生带着五个问题预习课本140页和141页的教材内容,同时让学生做一个等腰三角形的纸片,各小组长负责预习等工作。

(一)、导入

先复习“轴对称图形”的相关知识,根据本节课的特点,让学生带着问观察图片,找出图片里面的轴对称图形。

(二)、思考

1、自主学习,独立思考问题:

(1)什么是等腰三角形?

(2)等腰三角形各边都叫什么名称?各角呢?

(3)等腰三角形的性质?

(4)如何证明等腰三角形的性质?

(5)等边三角形的概念及性质?

2、动手操作、演示探究

——等腰三角形的性质

请同学们把等腰三角形纸片对折,让两腰重合!(电脑演示)发现什么现象?请尽可能多的写出结论。(从构成要素:边、角;相关要素:线、对称性方面考虑)

(三)、议展

1、探讨交流、得出结论:

重合的线段

重合的角

AB=AC

∠B=∠C

BD=CD

∠BAD=∠CAD

AD=AD

∠ADB=∠ADC

由这些重合的部分,猜想等腰三角形的性质。

构成要素:

边:等腰三角形的两边相等。

角:等腰三角形的两底角相等。简称“等边对等角”

相关要素:

线:等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合。简称“三线合一”

对称性:等腰三角形是轴对称图形

2、学生展示

证明“等边对等角”(学生展示)

三种方法证明等腰三角形性质“等边对等角”

已知:在△ABC中,AB=AC,求证:∠B=∠C

方法一:

证明:作底边BC上的中线AD。

在△ABD与△ACD中:

BD=DC(作图)

AD=AD(公共边)

∴△ABD≌△ACD(SSS)

∴∠B=∠C(全等三角形对应角相等)

方法二:

作顶角∠BAC的平分线AD。

∵AD平分∠BAC

∴∠1=∠2

在△ABD与△ACD中

AB=AC(已知)

∠1=∠2(已证)

AD=AD(公共边)

∴ △ABD ≌ △ACD(SAS)

∴ ∠B=∠C

方法三:

作底边BC的高AD。

∵AD⊥BC

∴∠ADB=∠ADC=90°

在RT△ABD与RT△ACD中

AB=AC(已知)

AD=AD(公共边)

∴ △ABD ≌ △ACD(HL)

∴ ∠B=∠C

(四)、点评

找各小组代表分别展示答案之后,其他小组进行评价,查漏补缺。然后通过老师讲解,再指出其实这作三种辅助线的位置根本没有发生改变,从而自然的过度到“三线合一”从中得出结论,达到对知识点的理解和掌握。

等腰三角形性质的几何语言

∵ AB=AC(已知)

∴ ∠B=∠C(等边对等角)

(1)等腰三角形的顶角的平分线,既是底边上的中线,又是底边上的高。

几何语言:

在△ABC中,

∵AB=AC , ∠1=∠2(已知)

∴BD=DC , AD⊥BC(等腰三角形三线合一)

(2)等腰三角形的底边上中线,既是底边上的高,又是顶角平分线。

几何语言:

在△ABC中,

∵AB=AC , BD=DC(已知)

∴AD⊥BC , ∠1=∠2(等腰三角形三线合一)

(3)等腰三角形的底边上的高,既是底边上的中线,又是顶角平分线。

几何语言:

在△ABC中,

∵AB=AC , AD⊥BC(已知)

∴BD=DC , ∠1=∠2(等腰三角形三线合一)

在学生掌握了等腰三角形的有关概念和性质之后,引出等边三角形的教学。

等边三角形定义:三边都相等的三角形叫做等边三角形

等边三角形的性质定理:等边三角形的三个角都相等,并且每一个角都等于60°。

等边三角形性质的证明:(学生在练习本完成后,再用课件展示证明过程)

例题:

已知:在△ABC中,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线。

求证:BD=CE.

(五)、练习

为了检测学生对本课教学目标的完成情况,进一步加强知识的应用训练,我设计了三组练习由易到难,由简单到复杂,满足不同层次学生需求。

练习1:知识点:(边:等腰三角形的两边相等。)

1、在等腰△ABC中,AB=3,AC=4,则△ABC的周长=________

2、在等腰△ABC中,AB=3,AC=7,则△ABC的周长=________

练习2:知识点:(角:“等边对等角”)

1、在等腰△ABC中,AB=AC, ∠B=50°,则∠A=__,∠C =_

2、在等腰△ABC中,∠A =100°,则∠B=___,∠C=___

练习3:(判断)知识点:(“三线合一”)

1、等腰三角形的顶角一定是锐角。

2、等腰三角形的底角可能是锐角或者直角、钝角都可以。

3、等腰三角形的顶角平分线一定垂直底边。

4、等腰三角形底边上的中线一定平分顶角。

5、等腰三角形的角平分线、中线和高互相重合。

(六)、总结

师生合作,共同归纳:

1、等腰三角形的两底角相等(简写成“等边对等角”)

2、等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合(简称“三线合一”)

3、等边三角形的性质定理:等边三角形的三个角都相等,并且每一个角都等于60°。布置作业

巩固性作业:143页习题1、2、(必做),143页习题3、4、(选做)

拓展性作业:

1、如图,在△ABC中,AB=AC,BD,CE分别为AB,AC边上的中线,试判断BD 、CE相等吗?并说明理由。

2、如图,在△ABC中,AB=AC,BD,CE分别为AB,AC边上的高线,试判断BD 、CE相等吗?并说明理由。

板书设计

17.1等腰三角形

等腰三角形相关概念:证明例题

等腰三角形的性质:

“等边对等角”

“三线合一”

等边三角形相关知识布置作业

课后反思

这节课从学生的实际认知出发,以“学生为主体,教师为主导”,课堂活动中充分调动学生的学习积极性,在整个教学过程中我以“启发学生,挖掘学生潜力,培养学生能力”为主旨而进行!充分地发挥学生的主观能动性。突出了重点,突破了难点,达到了知识能力情感的三合一,达到了预期的教学效果。不足之处的是,习题练习有限,未设置限时小测等等

初中数学等腰三角形性质教学设计 篇6

一、教材分析

1、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:

知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

2、教学重、难点:

重点:等腰三角形性质的探索及其应用。

难点:等腰三角形性质的探索及证明。

3、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

二、学情分析

刚进入初二的学生观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。

三、教法分析

《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,帮助他们进行自主探索和合作交流。为了顺利达到这一目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法进行教学。

四、学法建构

《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,因此,通过本节教学,我将对学生进行以下学法指导:

1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智能力投入,使学生始终处于主动探索状态。

2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的能力。

五、教学模式

本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。

《数学课程标准》提出了“问题情境——建立模型——解释、运用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究能力和创造性思维能力的培养,

提高学生的自主意识和合作精神。

六、教学程序和设想

《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。据此本节课我分以下环节组织教学。

(一)创设情境,观察联想。

1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形(等腰三角形、四边形、梯形)

2、两幅图中都有哪种几何图形(等腰三角形)

从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。

(二)动手操作,揭示课题。

3、什么是等腰三角形等边三角形它们有何关系

4、请学生动手作等腰三角形ABC,使AB=AC。裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。

5、小组交流发现的结论。(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。)

6、小组代表用语言表达得出的结论。

7、多媒体演示折叠过程,再现归纳得出的结论。

8、揭示、板书课题:等腰三角形性质。让学生温习、重现已学相关知识,为学习新知识做铺垫。

波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。

(三)独立思考,探究新知。

9、对于观察得出的结论是否能进行论证,请学生动手试一试。

放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。

(四)合作探究,交流创新。

10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,及时组织学生进行合作探究和交流,并作为合作者参与到学生的交流中。

组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。

(五)引导评价,形成规律。

11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作AD⊥BC、作BC边上的中线AD。通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。

12、等边三角形是特殊等腰三角形,它又具有哪些性质呢

学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。

运用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,不断追求,锻炼意志。

13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。培养学生的阅读能力和准确的几何语言表达能力。

(六)实践应用,巩固提高。

例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。

把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究能力和思维的广阔性、灵活性。达标练习(抢答)①填空。设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。

②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠EDF的度数通过能力训练题,提高学生分析问题和解决问题的实践能力。

③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗说明选用的工具和原理。进一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用能力。

(七)反思归纳,形成结构。

1、引导学生对学习过程进行小结:

①本节课你有哪些收获(知识、方法、技能),你认为重点是什么

②所学知识能解决哪些实际问题

③本节课所运用的学习方法对你今后学习有什么启示

2、布置作业:(分层布置)

这样进行课堂小结,关注学生个体差异,使每一个学生都有成功的学习体验,得到相应的提高和发展 https://m./ ,进一步培养学生的主体意识,锻炼学生的归纳总结能力。

一键复制全文保存为WORD